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Abstract

Many users of structural VAR models are primarily interested in learning about the

shape of structural impulse response functions. This requires joint inference about sets

of structural impulse responses, allowing for dependencies across time as well as across

response functions. Such joint inference is complicated by the fact that the joint distrib-

ution of structural impulse response becomes degenerate when the number of structural

impulse responses of interest exceeds the number of model parameters, as is often the

case in applied work. This degeneracy may be overcome by transforming the estimator

appropriately. We show that the joint Wald test is invariant to this transformation and

converges to a nonstandard distribution, which can be approximated by the bootstrap,

allowing the construction of asymptotically valid joint confidence sets for any subset of

structural impulse responses, regardless of whether the joint distribution of the structural

impulse responses is degenerate or not. We demonstrate by simulation the coverage ac-

curacy of these sets in finite samples under realistic conditions. We make the case for

representing these joint confidence sets in the form of "shotgun plots" rather than joint

confidence bands for impulse response functions. Several empirical examples demonstrate

that this approach not only conveys the same information as comfidence bands about

the statistical significance of response functions, but provides economically relevant addi-

tional information about the shape of response functions that is lost when reducing the

joint confidence set to two-dimensional bands.
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1 Introduction

It is well known that impulse response estimates from structural vector autoregressive

(VAR) models tend to be imprecisely estimated, given the short samples typical of ap-

plied work. This fact makes it important to assess the reliability of these estimates by

constructing confidence sets. It has become standard in the literature to evaluate the sta-

tistical significance of the estimated structural impulse response functions using pointwise

confidence intervals (see, e.g., Lütkepohl 1990, Kilian 1998). This practice is question-

able because pointwise intervals treat structural impulse response estimators as mutually

independent, when we know them to be dependent in general both across horizons and

across impulse response functions. Confidence bands obtained by connecting pointwise

confidence intervals tend to be too narrow and lack coverage accuracy, resulting in spuri-

ous findings of statistical significance. This problem has been recognized for a long time,

but there is no consensus on how to overcome these distortions.

Analogous problems also arise in Bayesian inference. In related work, Sims and Zha

(1999) and Inoue and Kilian (2013) have discussed possible solutions to this problem from a

Bayesian point of view. The current paper, in contrast, takes a frequentist perspective. To

the extent that the problem of joint impulse response confidence sets has been discussed in

the frequentist VAR literature, it has often been reduced to a problem of conducting joint

inference across a range of horizons for a given impulse response function. For example,

Jordà (2009) proposes one solution to this problem and Lütkepohl et al. (2013) several

alternatives. Simulation evidence on the finite-sample accuracy of these confidence bands

is discussed in Kilian and Kim (2011) and Lütkepohl et al. (2013).

It is important to stress that these approaches, while representing an important step

forward, are too restrictive for applied work. Many users of structural VAR models are

interested in conducting inference on multiple impulse response functions at the same time.

Sometimes the economic question of interest involves multiple impulse response functions.

For example, a macroeconomist may be interested in whether an oil price shock creates

1



stagflation in the domestic economy, which by necessity involves studying the responses of

inflation as well as real output. The same would be true if we studied the effect of a U.S.

monetary policy shock because the loss function of the Federal Reserve depends on both

real output and inflation. It is also common to be interested in testing the implications

of economic theory for a range of different impulse response functions simultaneously.

For example, Blanchard (1989) uses a macroeconomic VAR model to test the implication

of standard Keynesian models that (1) positive demand innovations increase output and

decrease unemployment persistently, and (2) that a favorable supply shock triggers an

increase in unemployment without a decrease in output. This example involves inference

about four impulse response functions simultaneously. There even are cases in which users

of structural VAR models are interested in studying the responses of all model variables

to all structural shocks simultaneously. A good example is recent structural VAR models

of the global market for industrial commodities such as crude oil (e.g., Kilian 2009).

A proper solution to this problem requires taking account of the dependence of all

structural impulse responses of interest, not just of the responses in a given impulse re-

sponse function. This is the objective of the current paper. We propose a novel approach

to constructing asymptotically valid joint confidence sets for any subset of the structural

impulse responses of interest that is based on inverting a Wald test statistic. One dif-

ficulty in this context is that in many situations the asymptotic normality of the joint

distribution of the structural impulse responses does not hold even in stationary vector

autoregressions. Specifically, when the number of structural impulse responses exceeds

the number of model parameters, the joint asymptotic distribution is degenerate, and the

distribution of the Wald test statistic is nonstandard. This problem has also been noted

in Lütkepohl and Poskitt (1991, p. 493), for example.

This degeneracy may be overcome by transforming the estimator appropriately. We

show that the joint Wald test statistic is invariant to this transformation and converges to

a nonstandard distribution, which can be approximated by the bootstrap, thus providing a
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theoretical justification for the use of the bootstrap Wald test statistic in constructing joint

confidence sets for structural impulse responses even in the absence of joint asymptotic

normality. This result greatly extends the range of problems that can be addressed with

this bootstrap method. A similar econometric problem has been described in a different

context by Andrews (1987). Andrews provides a sufficient condition that allows standard

inference based on asymptotic 2-critical values even when the covariance matrix used in

constructing the test statistic is asymptotically singular. This condition does not apply in

our setting, however, because the bootstrap covariance matrix is almost always positive

definite. Its eigenvalues are positive in finite samples and equal to zero only in the limit.

Thus, our approach is of independent interest.

We show that in idealized settings the joint Wald confidence region is expected to

be smaller than alterrnative confidence sets such as the Bonferroni set. We also analyze

the coverage accuracy of the these confidence sets in finite samples by simulation. Our

simulation design focuses on data generating processes with many lags, large roots, and

realistic sample sizes. We find that the bootstrap Wald confidence set to be reasonably

accurate even in large-dimensional and highly persistent VAR models, while the Bonferroni

approach is conservative. The latter result is not unexpected because the number of

structural impulse responses of interest in these models is large.

A closely related approach has been proposed independently in Lütkepohl et al. (2014).

One difference between our analysis is that we focus on the Wald test statistic for the

vector of structural impulse responses, , whereas Lütkepohl et al. (2014) utilize a Wald

test statistic for the parameters of the VAR model, . They then infer the confidence

region for  from the mapping  = (). We contrast these two approaches and note that

the Wald test statistic in Lütkepohl et al. (2014) has certain theoretical advantages in

constructing joint confidence regions for impulse responses compared with our approach.

Our simulation study, however, suggests that the differences in coverage accuracy tend to

be small. In the few cases in which there is a larger difference in coverage accuracy, the
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Wald test statistic for  yields more accurate confidence regions.

The second difference between our analysis and Lütkepohl et al. (2014) is that we

propose to plot the sets of impulse responses associated with each bootstrap draw that

is contained in the joint Wald confidence set, resulting in plots for each impulse response

function that resemble a shotgun trajectory chart (“shotgun plot”). In contrast, Lütke-

pohl et al. (2014) connect the pointwise maxima of the impulse responses in the joint set

to form the upper bound of a confidence band and similarly connect the pointwise minima

of the impulse responses in the joint set to form the lower bound of a confidence band.

This approach results in a loss of information compared with our shotgun plots because

one is no longer able discern the evolution over time of the impulse response functions as-

sociated with any one structural model estimate in the joint confidence set. It is precisely

this evolution of the response function that users of structural VAR models typically are

interested in (see, e.g., Cochrane 1994). For example, many macroeconomists have aban-

doned frictionless neoclassical models and adopted models with nominal or real rigidities

based on VAR evidence of sluggish or delayed responses of inflation and output (see, e.g.,

Woodford 2003). This is also true in other applications. Whereas macroeconomists may

be interested in whether a response function for real output is hump-shaped or not, for

example, users of structural VAR models in international economics may be interested in

whether there is delayed overshooting in the response of the exchange rate to monetary

policy shocks. It is difficult to answer such questions about the shape of a given impulse

response function based on two-dimensional joint confidence bands in general because such

bands are consistent with a multitude of different response patterns.

These difficulties are compounded when considering the analysis of more than one

impulse response function at a time, as is common in applied work. For example, one may

interested in whether an unanticipated increase in the real price of oil is stagflationary. A

stagflationary responses means that the response of real output to this shock is negative

at all horizons, while the response of the price level in the same model is positive at all
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horizons (see Kilian 2008). A confidence band of the type proposed in Lütkepohl et al.

(2014) cannot answer this question in general. To illustrate this point, consider two model

realizations in the joint Wald confidence band, one of which implies a positive response

of both real output and the price level, while the other model implies a negative response

of both real output and the price level such that neither model implies a stagflationary

response. The resulting confidence band will nevertheless be observationally equivalent

to one in which some models have stagflationary responses in that the confidence bands

cover both negative and positive responses of both real output and the price level.

We illustrate these points based on two empirical examples. Our first empirical example

is a semi-structural model of U.S. monetary policy; the second example is a semi-structural

model of the response of the U.S. economy to oil price shocks. We use these examples to

illustrate that in some situations, the use of shotgun plots and of joint confidence bands

will yield the same answer by construction. For example, if we are interested only in one

impulse response function at a time, the lower bound of the joint confidence band will

include zero at some horizon, if and only if some of the impulse response functions in the

shotgun plot crosses zero. In other situations, the shotgun plots implied by joint Wald

confidence sets may reveal features of the data that are obscured by more traditional point-

wise confidence intervals or by two-dimensional joint confidence bands. For example, the

shotgun plot provides strong evidence against the hypothesis of stagflationary responses

to oil price shocks that cannot be detected based on joint confidence bands. Likewise,

the shotgun plot provides evidence of hump-shaped responses of real output to monetary

policy shocks which is not conveyed by joint confidence bands.

The remainder of the paper is organized as follows. In section 2, we define basic

notation. The asymptotic results are developed in section 3. We also provide a simple

AR(1) example to illustrate the difference between our problem and the related testing

problem analyzed in Andrews (1987). Section 4 reviews the practical implementation

of the Wald and Bonferroni approach to constructing joint confidence sets for structural
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impulse responses. In section 5, we compare the power of alternative test statistics used in

constructing joint confidence regions, and in section 6 we contrast the Wald test statistics

proposed in Lütkepohl et al. (2014) and in the current paper. The simulation results

are summarized in section 7 and the empirical examples are discussed in section 8. We

conclude in section 9. Technical arguments are relegated to the appendix.

2 Model

Consider an -variate structural VAR of order :

0 = +1−1 + · · ·+− +  (1)

with reduced-form representation:

 = +Φ1−1 + · · ·+Φ− +  (2)

where  and  are  × 1 vectors of intercepts,  and Φ are  ×  slope parameter

matrices for  = 0 1   with Φ0 = , and the  × 1 vectors of disturbance terms
satisfy  ∼ (0×1 ) and hence  ∼ (0×1  ).  is an  ×  positive

definite matrix. The structural impulse responses may be identified from model (2), for

example, by imposing short-run exclusion restrictions directly on 0, so that there is a

unique nonsingular matrix 0 that satisfies 0
0
0 =  . Then the th step ahead structural

impulse response of (1) can be written as Ψ
−1
0 , where Ψ is the th step ahead reduced-

form impulse response matrix of (2).

Let  denote a  × 1 vector that is obtained from stacking the elements of structural

impulse responses of interest. For example,  could contain all impulse response functions

stacked into one vector or it could contain any subset of the structural impulse responses

of interest. Let b denote the estimator of . Note that b can be written as a nonlinear
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function of sample averages of the data, i.e., ̂ = (̄ ), where ̄ is a  × 1 vector
consisting of the first and second moments of  −1  −.

Although we choose to present our results in the context of stationary VAR models

identified based on short-run exclusion restrictions, our framework could be adapted to

allow for the imposition of exclusion restrictions on long-run impulse responses in suitably

transformed VAR models containing some I(1) variables. In contrast, our analysis does

not allow for set-identified structural impulse responses.

3 Asymptotic Theory

Our objective is to find an asymptotic approximation to the distribution of the Wald sta-

tistic of the vector-valued structural impulse response estimator under the null hypothesis:

0 : () = 0

where  = (̄ ) Our proposal is to invert the Wald statistic to form an asymptotically

valid joint confidence set for this null hypothesis. We begin with some conditions required

for characterizing the joint asymptotic distribution of the elements of (̄ ).

Assumptions.

(a)  ≡ Ω−
1
2

√
 (̄ − )

→  ≡ (0 ) and ∗ ≡ Ω−
1
2

√
 (̄∗

 − ̄ )
→ ∗ ≡

(0 ) where Ω is a positive definite matrix and the convergence of 
∗
 is with

respect to the bootstrap probability measure conditional on the data.
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(b) There are conformable matrices 0,..., and ̂0,...,̂ such that


1
2 ((̄ )− ()) = 0 + −

1
21( ⊗  ) +   

+−

2( ⊗ · · ·⊗  ) + (

−
2 ) (3)


1
2 ((̄∗

 )− (̄ )) = ̂0
∗
 + −

1
2 ̂1(

∗
 ⊗ ∗ ) +   

+−

2 ̂(

∗
 ⊗ · · ·⊗ ∗ ) + ∗(

−
2 ) (4)

where ̂ =  + (1) for  = 0 1   and ∗(
−
2 ) is with respect to the

bootstrap probability measure conditional on the data with probability one.

Remarks.

1. Assumption (a) holds when applying the residual-based bootstrap to stationary vector

autoregressive processes. It also covers vector error correction models with known coin-

tegrating vectors and VAR models in which integrated variables have been differenced to

achieve stationarity. Conditional heteroskedasticity can be accommodated by the use of

the wild bootstrap (see Gonçalves and Kilian 2004).

2. Assumption (b) follows from a Taylor series expansion of the left-hand side of equations

(3) and (4). The delta method is based on the first-order term of the stochastic expansion

on the right-hand side (see Lütkepohl, 1990, for the application of the delta method to

structural impulse responses). The higher-order stochastic terms on the right-hand side

have also been used to develop Edgeworth expansions of the distribution of estimators

(see Hall, 1992). Assumption (b) holds, for example, for stationary vector autoregres-

sive processes with positive definite error covariance matrices and short-run exclusion

restrictions. For more primitive assumptions for the existence of higher-order asymptotic

expansions of the distribution of estimators in stationary time series models see Bao and

Ullah (2007) and Bao (2007).

Theorem 1 (Joint Asymptotic Distribution of Structural Impulse Responses).

Suppose that Assumptions (a) and (b) hold. Then there are 0 ≤  ≤  and × nonsingular
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matrix  such that

Υ
0((̄ )− ())

→  ≡

⎡⎢⎢⎣
000

011( ⊗ )
...

0( ⊗ · · ·⊗ )

⎤⎥⎥⎦  (5)

Υ
0((̄∗

 )− (̄ ))
→ ∗ ≡

⎡⎢⎢⎣
000

∗
011(

∗ ⊗ ∗)
...

0(
∗ ⊗ · · ·⊗ ∗)

⎤⎥⎥⎦  (6)

where  = [0 1 · · · ],  is  ×  with 0 = ,  ≥ 0 and
P

=0  = , and

Υ =

⎡⎢⎢⎢⎣


1
2 0 00×1 · · · 00×

01×0 1 · · · 01×
...

...
. . .

...

0×0 0×1 · · · 
+1
2 

⎤⎥⎥⎥⎦ 

Remarks.

1. We allow for  =  and   . When 0 is of full rank such that  = , the delta

method can be applied to the entire vector ̂ so that . This is the case that Lütkepohl

et al. (2014) appeal to. When 0 is not of full rank, which is the case of primary interest

in the current paper, we have    and the delta method fails. The distribution of the

impulse responses in the AR(1) model with zero slope analyzed in Benkwitz, Lütkepohl

and Neumann (2000) is a special case of   .

2. Theorem 1 shows that the estimator of structural impulse responses can be rotated by

some matrix  such that some elements may converge at a faster rate than others if   .

Such coordinate rotations have been employed in various contexts in the literature (see,

e.g., Phillips 1989; Sims, Stock and Watson 1990; Antoine and Renault 2012).

Assumptions.

(c)

Υ
0((̄∗

 )− (̄ ))((̄
∗
 )− (̄ ))

0Υ
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is uniformly integrable.

(d)  = (0) is nonsingular.

Remarks.

1. Assumption (c) guarantees that the bootstrap method can be used to estimate the

limiting covariance matrix.

2. Assumption (d) requires that the scaled rotated vector of impulse responses in Theorem

1 has a nonsingular asymptotic covariance matrix.

Theorem 2 (Asymptotic Null Distribution of the Wald Statistic)

Suppose that Assumptions (a), (b), (c) and (d) hold. Then under the null hypothesis





→ 0−1 (7)


∗


→ ∗0−1∗ (8)

where the convergence of 
∗
 is with respect to the bootstrap probability measure con-

ditional on the data with probability one.

Remarks.

Theorem 2 shows that the Wald statistic has a nonstandard asymptotic null distribution

when   . This situation occurs when the number of structural impulse responses

exceeds the number of slope parameters in the fitted VAR model. Theorem 2 shows that

this null distribution may be approximated by bootstrap methods because  and ∗ both

are vectors of standard normal random variables, so the limiting distribution of 
∗
 is the

same as that of 

 . The bootstrap method is generally applicable in that it also recovers

the correct asymptotic null distribution of the Wald statistic in the case of  = . In the
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latter case, 



→ 2 and 
∗


→ 2.

Theorem 2 has the following corollary:

Corollary (Asymptotic Validity of Joint Confidence Sets)

Under the stated assumptions and the null hypothesis,

lim
→

 ∗( 
  ∗1−) = 1−  (9)

where  ∗ is the bootstrap probability measure conditional on the data and ∗1− denotes

the 100(1 − )% bootstrap critical value for the Wald statistic obtained using the same

bootstrap methods conventionally used for inference about -statistics.

The effective coverage accuracy of the nominal 100(1 − )% Wald confidence set can

be evaluated by evaluating in repeated samples with what probability 

 is contained in

the confidence region implied by the ∗1− critical values.

The next section illustrates the results in Theorems 1 and 2 in the context of a stylized

example in which 0 is less than full rank such that the conventional asymptotic approxi-

mation fails. We also demonstrate how our approach differs from that in Andrews (1987)

who considered a related problem in which singular covariance matrices are used in Wald

test statistics. We show that his results do not apply in our setting because the bootstrap

covariance matrix is nonsingular with probability one, even though its probability limit is

singular.

3.1 An Illustrative Example

Suppose that

 = −1 +  (10)

where ||  1 and 
∼ (0 2). Assumption (a) is satisfied for strictly stationary

autoregressive processes with iid disturbance terms with finite variance (e.g., Freedman
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1984). Consider jointly testing the null hypothesis that  = 0 and 2 = 20, where  and

2 correspond to the responses of + to a unit shock in  for  = 1 2. Because

b −  =

P
=2 −1P
=2 

2
−1

=
1

(2−1)
1



X
=2

−1 + 

µ
1



¶

=
1− 2

2
1



X
=2

−1 + 

µ
1



¶

=

µ
1− 2

2

¶1
2

−
1
2 +

µ
1



¶
 (11)

and

b2 − 2 = 2(b − ) + (b − )2 (12)

where  = ((1− 2)2)
1
2−

1
2

P
=2 −1, we can write

∙ b − b2 − 2

¸
=

" 1
(2−1)
2

(2−1)

#
1



X
=2

−1 +
∙

0
1

[(2−1)]2

¸Ã
1



X
=2

−1

!2
+

∙
(

−1)
(

−1)

¸

=

⎡⎣ (1−2) 12


2(1−2) 12


⎤⎦− 1
2 +

∙
0

(1−2)
2

¸
−12 +

∙
(

−1)
(

−1)

¸
 (13)

Thus Assumption (b) is satisfied. By the Schur decomposition theorem, we have

0000 = Λ (14)

where

 =
1

(42 + 1)
1
2

∙
1 2
2 −1

¸
 0 =

⎡⎣ (1−2) 12


2(1−2) 12


⎤⎦  Λ =

∙
(1−2)(42+1)

2
0

0 0

¸

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Thus it can be shown that

Υ
0
∙ b − b2 − 2

¸

=

"
[(1−2)(42+1)] 12


0

#
 +

⎡⎣ 2(1−2)
2(42+1)

1
2
−

1
2

− 1−2
2(42+1)

1
2

⎤⎦2 + (1) (15)

where

Υ =

∙


1
2 0
0 

¸


Note that the first element of (15) converges in distribution to a normal random variable,

whereas the second element converges in distribution to a chi-square random variable up

to scale, which is exactly the implication of Theorem 1. The limiting covariance matrix of

(15) takes the form of "
(1−2)(42+1)

2
0

0
3(1−2)2
4(42+1)

#
 (16)

which the bootstrap covariance matrix approximates under the assumption of uniform

integrability. Thus, the asymptotic null distribution of the Wald statistic is

2 +
1

3
4 (17)

where  is the asymptotic normal distribution of  . The latter result is an implication

of Theorem 2. While the Wald test statistic is pivotal, it is not chi-square, so Andrews’

(1987) solution does not apply in our context.

4 Implementation of the Proposed Methods

Before proceeding to simulation evidence and empirical examples, it is useful to review the

implementation of the Wald approach in practice. We also review the application of the

Bonferroni approach as the leading alternative to the Wald approach. There are a number
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of potential refinements of the original Bonferroni approach designed to reduce the width

of the joint confidence bands. We ignore these refinements given evidence in Lütkepohl et

al. (2014) that for processes with degrees of persistence similar to our simulation designs

and empirical examples these refinements undermine coverage accuracy and hence cannot

be recommended.

4.1 Joint Wald Confidence Sets

Upon stacking the estimates of the structural impulse responses of interest in a ×1 vector
b , we bootstrap the structural impulse responses and denote the bootstrap estimates byb∗() for  = 1 2  , where  is the number of bootstraps. In practice, we rely on the

standard residual-based bootstrap method for parametric models with iid errors. For a

review of this and alternative bootstrap methods for vector autoregressions see Berkowitz

and Kilian (2000). If we are testing a specific null hypothesis,  = 0, we form the Wald

test statistic by



 = (b − 0)

0bΣ∗−1 (b − 0) (18)

where bΣ∗ = (1) X
=1

(b∗ − b )(b∗ − b )0 (19)

To test a given null hypothesis, the value of the Wald statistic would be compared to the

100(1− ) percentile of the empirical distribution of the bootstrap Wald test statistics


∗()
 = (b∗() − b )0bΣ∗∗−1 (b∗() − b ) (20)

for  = 1 2  . Generating the bootstrap critical values requires a nested bootstrap

loop, because for each bootstrap realization of the Wald statistic the term bΣ∗ in turn must
be evaluated by bootstrap simulation.

In the absence of a specific null value, 0, joint confidence sets may be constructed
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by comparing the value of each of the bootstrap Wald test statistics (20) against the

100(1−) percentile of the bootstrap distribution. It the bootstrap Wald test statistic is

less than this critical value, this bootstrap draw, b∗() is retained and becomes a member

of the joint confidence set. This allows us to characterize the confidence region with

increasing accuracy, as  →∞. In our empirical work, we rely on 2 000×2 000 bootstrap
replications.

An important question is how to represent the members of that set of estimates. Our

approach differs from that in Lütkepohl et al. (2014) who propose to construct a joint

confidence band by constructing an envelope around the shotgun plot. The upper bound of

this band is obtained by connecting the largest realization for each element of b∗() across

 to form a line; the lower bound is obtained by connecting the smallest realization for

each element of b∗() across . We instead follow Inoue and Kilian (2013) in representing

the impulse response draws by plotting all sets of impulse responses associated with the

models contained in the joint Wald confidence set. As a result, each impulse response

function viewed in isolation looks like a shotgun trajectory chart. Unlike conventional

representations of confidence sets, this “shotgun plot” may be frayed around the edges.

The fact that we do not reduce the information to a two-dimensional confidence band

is not a drawback of our method in that the shotgun plot conveys the same information

as confidence bands would, but it also conveys additional information. In fact, when

structural VAR users are interested in the shape of the impulse response functions of

interest, for example, or in the relationship of different impulse response functions, only

displaying a confidence band may involve an important loss of information, as we will

illustrate in section 8.

4.2 Bonferroni Confidence Sets

A well-known alternative for constructing joint confidence regions for  are Bonferroni

bounds. In implementing the Bonferroni method we follow Lütkepohl et al. (2013, 2014)
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in forming  -test statistics for testing  = 0 for  = 1 2  :

 =
b − 0qbΣ∗  (21)

where b, 0 and bΣ∗ denote the th element of b , the th element of 0 and the ( )th
element of bΣ∗ , respectively. Each of the   test statistics is compared to the 100(1−)
percentile of the empirical distribution of the corresponding bootstrap  test statistics:


∗()
 =

b∗() − bqbΣ∗∗  (22)

for  = 1   and  = 1  . If any of the   tests rejects its null hypothesis, the null

hypothesis,  = 0 is rejected.

In constructing the joint set, the Bonferroni method only utilizes the marginal distri-

butions of the structural impulse responses, which are asymptotically normal under our

assumptions; hence, this method is unaffected by any degeneracy of the joint distribution.

The Bonferroni bounds will remain asymptotically valid in the sense of providing a bound

on the joint confidence set with at least 100(1− )% coverage.

5 Power Considerations

In related work, Lütkepohl et al. (2014) evaluate the power of the Wald test statistic


()
 based on the average width of the two-dimensional joint confidence bands implied

by the joint confidence set
©
()| ∈ 

1−
ª
 where  

1− denotes the 100(1− )% joint

confidence region for the VAR model parameters . This approach results in conservative

bands in that the coverage probability of the Wald confidence band is at least 1 − , as

is the coverage probability of the corresponding Bonferroni confidence band. Lütkepohl

et al. (2014) demonstrate by example that it is possible for a Bonferroni confidence

band for impulse responses to have lower average interval width than a Wald confidence
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band, conditional on both bands having coverage accuracy of at least 1− (although not

necessarily the same coverage accuracy).

To further illustrate this point, they consider a stylized numerical example involving an

 -dimensional Gaussian vector b with covariance matrix  , for which one can determine
a precise confidence box with exact confidence level 1−, obtained by choosing individual
confidence intervals with confidence level 1 −  where  = 1 − (1 − )1  This

precise confidence box has width 2× 1−2, where  refers to a quantile of the (0 1)

distribution, while the width of the Bonferroni box is 2 × 1−(2) and the width of

the 

1− box is 2×

p
2()1−. Lütkepohl et al. (2014) illustrate by simulation that

under these idealized conditions the Bonferroni box comes close to the width of the precise

confidence box, while the Wald joint confidence box becomes increasingly larger, as the

dimension of  increases. On the basis of this result as well as other simulation evidence,

they make the case that the Bonferroni method deserves serious consideration for applied

work.

Focusing on the average width of the bands is appropriate, if one restricts the analy-

sis to joint confidence bands. If one focuses on the performance of the  -dimensional

confidence region implied by the Wald test statistic instead, as we do in our analysis,

the relevant metric is the volume of the  -dimensional confidence region instead. This

volume may be computed in the example of Lütkepohl et al. (2014) by raising the width

of the precise confidence box and of the Bonferroni confidence box to the power of  .

The corresponding volume of the Wald confidence region under the assumptions above is

22()
2
1−Γ(2 + 1). This result is based on the volume of a ball of radius  in

the  -dimensional Euclidian space, which is 2Γ(2 + 1), where  = 2()
12
1−

in our case.

Table 1 shows that the Wald confidence box, as measured by the volume of the implied

joint confidence region, is much larger than the precise confidence box. Even for  = 2,

there is a 22% increase in volume. For  = 10, the increase in volume reaches a factor
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of 87. This result indicates a substantial loss in power resulting from the use of the

projection method in constructing the joint confidence band. In contrast, the volume of

the joint confidence region implied by the Bonferroni confidence box is only 7% higher

than the volume of the precise confidence box for = 10. Thus, based on its volume, the

Bonferroni confidence box is clearly preferred. While this result is qualitatively similar

to that in Lütkepohl et al. (2014), Table 1 also shows that the volume of the joint Wald

confidence set is much smaller than that of the precise confidence boxes. Its volume is

lower for every choice of  . For  = 2, the reduction in volume amounts to 5%. For

 = 10, the reduction in volume increases to 80%.

Table 1 shows that it makes a difference whether one evaluates the volume in 

dimensions or in two dimensions. On the basis of the volume of the joint confidence set,

we conclude that the joint Wald confidence set is preferred to the Bonferroni bounds. This

example is necessarily stylized, and there is no guarantee that these results will carry over

to the more complicated setting of mutually correlated estimators of structural impulse

responses. Nevertheless, the analysis suggests that the joint Wald confidence set will not

only have accurate coverage 1 −  asymptotically, but that it may have much smaller

volume than the alternative joint confidence regions implied by the Bonferroni set or by

joint Wald confidence bands.

6 Alternative Wald Confidence Regions

Extending this analysis to vectors of structural impulse responses further complicates the

analysis. In section 3, we proposed a joint confidence region for  obtained by inverting the

Wald test statistic 

 to obtain the set

©
| ∈


1−

ª
. An alternative approach would

have been to construct a joint confidence region by inverting the Wald test statistic
()
 ,

on the basis of which Lütkepohl et al. (2014) construct their confidence bands 
()
1− ,

to obtain the joint confidence set
©
()| ∈ 

1−
ª
, where  denotes the parameters of the

vector autoregression and where we made use of the fact that inverting
()

 is equivalent
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to inverting

 
 = (b − 0)

0bΩ∗−1 (b − 0)

where bΩ∗ = (1)P
=1(

b∗ − b )(b∗ − b )0 and (0) = 0.

Although Lütkepohl et al. (2014) do not consider this approach, it has several merits in

the context of our analysis. First, it avoids the singularity of the joint limiting distribution

of the impulse responses, when exceeds the number of model parameters. This point is

of no consequence for the first-order asymptotic validity of these methods, given that both



 and 

()
 must be bootstrapped in practice and given that the potential degeneracy

of the joint distribution can be dealt with by bootstrapping 

 , as we have shown. It

matters, however, for two other reasons.

First, because  has a higher dimension than , one would expect the Wald test sta-

tistic 

 to be less powerful than 

()
 . This means that the implied confidence regions

for 
()
1− should have even smaller volume than 


1−. Second, while bootstrapping ei-

ther 

 or 

()
 results in first-order asymptotically valid confidence sets, the coverage

accuracy of 
()
1− is determined by the coverage accuracy of 


1−, which is asymptoti-

cally pivotal, whereas 

1− is not. This suggests that bootstrapping 

()
 should yield

asymptotic refinements and may improve the finite-sample coverage accuracy of the joint

confidence set (see Hall 1992). How relevant such asymptotic refinements are in practice

is a different matter (see Kilian 1999). We therefore include
©
()| ∈ 

1−
ª
as an ad-

ditional competitor in our simulation study below and compare its coverage accuracy to

that of
©
| ∈


1−

ª
as well as the Bonferroni set. We do not compare the volume of

these confidence regions, because it is not clear how to construct measures of the volume

of these confidence regions in general, but the example in section 5 suggests that both

Wald confidence regions are likely to have lower volume than any of the alternatives.

19



7 Simulation Study

We assess the coverage accuracy of the proposed joint Wald confidence set based on two

data generating processes that are representative for the types of models of interest in

applied work, but are not so large as to make a simulation study computationally pro-

hibitive. We also compare the coverage accuracy of the joint Wald confidence set to that

of the Bonferroni set. The coverage accuracy of the Wald confidence set is evaluated by

verifying in repeated trials how often 

 and  

 , respectively, are outside the rejection

region constructed by bootstrap methods. The coverage accuracy of the Bonferroni set

is evaluated by verifying in repeated trials whether the bootstrap Bonferroni confidence

band for  includes all of the population impulse responses of interest. Both methods are

implemented based on a nested bootstrap loop with 1 000 × 1 000 replications for each
Monte Carlo trial. The coverage results are based on 500 Monte Carlo trials, given the

high computational cost of the exercise.

7.1 DGP 1: Monthly VAR Model

The first data generating process (DGP) is a recursively identified three-variable VAR()

model of the global market for crude oil proposed by Kilian (2009). The model includes

the growth rate of global crude oil production, a measure of global real economic activity

(expressed as a business cycle index), and the real price of oil. Notwithstanding the model’s

recursive structure, all three shocks in this model can be given a structural economic

interpretation. There is a flow supply shock, a flow demand shock and an oil-market

specific demand shock, designed to capture, for example, precautionary demand shocks.

As in Kilian (2009), we are interested in the responses of all three model variables to each

of these shocks at horizons  = 0  17.

The DGP is based on estimates of this VAR model on the original data set used in

Kilian (2009) with lag order  ∈ {6 12 24}, reflecting common choices of the lag order for
monthly data. All models include an intercept. The estimation period is 1973.2-2007.12.
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The sample size in the simulation study matches that in the original data to make the

analysis as realistic as possible. For details of the data construction the reader is referred

to Kilian (2009). The lag order is treated as known in the simulations, as an increasing

number of empirical studies simply postulates a lag order rather than relying on lag order

selection criteria. One reason is that lag order estimates tend to be biased downward in

practice (see Kilian 2001). A case in point is Kilian (2009) who set  = 24. For expository

purposes, the error term is modelled as iid based on the empirical error distribution.

Table 2 compares the effective coverage rates of nominal 68% and 95% joint confidence

sets for all 162 structural impulse response coefficients of interest. The choice of the

significance level is motivated by the focus on one- and two-standard pointwise error

bands in applied macroeconomic research, which corresponds to 68% and 95% confidence

intervals under normality. When the number of structural impulse responses of interest

exceeds the number of model parameters, as is the case in this design when  = 6 and

 = 12, the conventional asymptotic approximation for the 

 -test statistic breaks down.

Theorem 2 shows that our bootstrap asymptotic approximation, in contrast, remains

equally valid regardless of the choice of  and the maximum horizon.

Table 2 confirms that this approximation works well in that the coverage rates of the



1− confidence set are fairly accurate and stable across . For the 68% joint confidence

set, the 

1− coverage probabilities range from 66% to 71%; for the 95% joint confidence

set from 94% to 96%. These coverage rates are closer to nominal coverage than for the

Bonferroni approach. For example, the 68% Bonferroni bound yields effective coverage

rates of between 79% and 84% and the 95% Bonferroni bound between 97% and 98%. As

expected, given the magnitude of , the Bonferroni bound is conservative. Bootstrapping


()
 instead of 


 does not systematically improve coverage accuracy. In fact, in one

case the 
()
1− joint confidence region is noticeably less accurate than the 


1− region.
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7.2 DGP 2: Quarterly VAR Model

The second DGP for the simulation study is a semi-structural recursively identified mone-

tary policy VAR model of the type discussed in Christiano, Eichenbaum and Evans (1999).

We focus on a prototypical model with only three variables, in which the Federal Reserve

Board controls the interest rate by setting the policy innovation after observing the fore-

cast errors for deflator inflation and real GDP growth. The interest rate is ordered last

such that policy shocks do not affect inflation and growth within the current quarter.

Only the monetary policy shock is identified. We are interested in the own-response of the

interest rate to a monetary policy shock as well as the responses of inflation and economic

growth at horizons of  = 0  15. The choice of a horizon of four years is typical in

applied work on responses to monetary policy shocks based on quarterly data, given the

persistence of the responses in question. The error term is again modelled as iid based on

the empirical error distribution.

The DGP is based on estimates of this VAR model on U.S. data with lag order  ∈
{4 6 8}, reflecting common choices of the lag order for quarterly data. All models include
an intercept. The estimation period is restricted to 1954.IV-2007.IV in order to exclude

the recent period of unconventional monetary policy measures. The sample size in the

simulation study matches that in the underlying data for maximum realism. All data are

obtained from the FRED data base of the Federal Reserve Bank of St. Louis. Quarterly

GNP is expressed in chained 2005 dollars and seasonally, as is the corresponding GNP

deflator. The effective federal funds rate is averaged to quarterly frequency.

Table 3 shows that the effective coverage rates of the Wald confidence set for the 48

structural impulse response coefficients of interest are again reasonably accurate, consistent

with our theoretical results. At the 68% significance level, coverage rates are between 63%

and 66%; at the 95% significance level, between 92% and 93%. In contrast, the Bonferroni

bound results in excessively high coverage rates ranging from 83% to 88% and from 96%

to 98%, respectively. Again, bootstrapping 
()
 instead of 


 does not systematically
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improve coverage accuracy. In the few cases in which there is a larger difference in coverage

accuracy, Table 3 shows that the 
()
1− confidence region is less accurate. On the basis

of this evidence and the corresponding results in Table 2 we restrict attention to 

1− in

the empirical analysis discussed below.

7.3 Comparison with Other Simulation Evidence

We conclude that inverting the Wald test statistic of Theorem 2 produces reasonably

accurate joint confidence sets even in high-dimensional problems. Although our asymptotic

approximation did not allow for roots that are local to unity, these examples suggest that

our method provides a good approximation even when the dominant autoregressive root

is quite close to unity. For example, in the monthly simulation design, the roots of the

data generating processes range from 0.967 to 0.989, depending on . In the quarterly

simulation design the dominant root may be as high as 0.948.

Likewise, it is worth pointing out that our application of the bootstrap does not involve

any bias adjustments for the slope parameters of the type proposed by Kilian (1998) for

pointwise inference about impulse responses. Such adjustments do not appear necessary

in our context. It is also of interest to note that the joint confidence sets remain accurate

even at relatively long horizons, at which conventional pointwise asymptotic and bootstrap

intervals already tend to become inaccurate (see Kilian and Chang 2000). Finally, it is

useful to highlight some differences between our analysis and the simulation evidence

reported in Lütkepohl et al. (2014). Their simulation design was a bivariate VAR(1)

model with a wide range of different degrees of persistence and sample sizes. The relevant

comparison is to their results for highly persistent VAR processes.

First, whereas Lütkepohl et al. (2014) show that Bonferroni sets are at best mildly

conservative in terms of coverage, we found them to be considerably more conservative for

our simulation designs. One would expect this difference to be largely explained by the

fact that  in our simulation designs is much larger than in their study, which puts the
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Bonferroni method at a disadvantage.

Second, Lütkepohl et al. (2014) find that the Wald confidence band 
()
1− has

reasonably accurate coverage for the simulation designs in question when  is moderately

large. We show the Wald confidence sets based on 

1− and 

()
1− to be reasonably

accurate for much larger . There is one important difference, however. Because we are

not concerned with the construction of joint confidence bands, we evaluate the coverage

accuracy of the joint Wald confidence sets instead by assessing with what probability the

joint Wald test statistics 

 and 


 lie outside their respective bootstrap critical region.

Lütkepohl et al. (2014), in contrast, assess the coverage accuracy of the joint confidence

band by recording the relative frequency with which the joint confidence band entirely

includes the corresponding vector of true impulse responses. Hence, the results are not

directly comparable.

Third, because forming two-dimensional confidence bands by the projection method

involves a loss of power, the 
()
1− confidence band may be wider on average than the

Bonferroni band. Lütkepohl et al. (2014) show by simulation that the Bonferroni bounds

indeed in many situations can produce tighter confidence bands than 
()
1− , while

preserving coverage rates of at least 1 − . These situations do not include the highly

persistent VAR processes representative of much of applied work, however, as shown in

their Table 4. There is little to choose between these two approaches in the latter case.

An interesting extension of Lütkepohl et al.’s work would be to compare the finite-

sample coverage accuracy and average width of the confidence bands based on 

1− to


()
1− . We do not pursue this question because our analysis focuses on joint confidence

regions rather than bands. The reason is that the construction of joint confidence bands

based on the Wald confidence region, while facilitating comparisons with the Bonferroni

bounds, negates some of the advantages of working with shotgun plots of the impulse

responses based on the joint Wald confidence set. This point is illustrated in the next

section. For expository purposes we focus on the shotgun plots associated with the 

1−
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confidence region.

8 Empirical Examples

8.1 A VAR Model of U.S. Monetary Policy

The first example is a VAR(4) model of U.S. monetary policy estimated on quarterly data

for 1959.I-2007.IV. The variables include GNP deflator inflation, real GNP growth and

the federal funds rate. The dominant autoregressive root is 095. The model is identified

recursively with the federal funds rate ordered last. We are interested in the responses

of the model variables to an unexpected monetary policy tightening, corresponding to an

unexpected increase in the federal funds rate, so  = 48.

Figure 1 shows the three shotgun plots obtained by plotting all sets of structural

impulse responses contained in the 68% joint confidence set based on 

 . An easy way of

testing whether any of these responses is zero is to search for impulse response functions

that cross the zero line. We conclude that neither the response function of real GNP

growth nor the response function of inflation is distinguishable from the zero line at the

68% significance level. Exactly the same result would be obtained by constructing the joint

confidence band as in Lütkepohl et al. (2014) by connecting the uppermost realizations of

the shotgun plot at each horizon to form the upper confidence band and by connecting the

lowest realizations by horizon to form the lower band. In this sense, these two approaches

convey the same information.

Such a joint confidence band, however, would tend to obscure information about the

shape of a given response function. Consider, for example, the response of the level of U.S.

real GNP to an unexpected monetary policy tightening, which is obtained by cumulating

the responses of the growth rate. Standard business cycle theory implies that the increase

in real GDP caused by a unexpected loosening of monetary policy should be hump-shaped.

Figure 3 shows this response obtained by flipping the sign of the cumulated growth rate
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response shown in Figure 2. We also added a visual representation of the joint confidence

band obtained by constructing an envelope around the shotgun plot. It is unclear from

inspecting the confidence band, what the shape of the response function is. Indeed, the

confidence band is wide enough to accommodate any number of shapes of the response

function, some consistent with economic theory and some not.

Most economists would be interested in the question of whether economic models im-

plying a hump-shaped response of real output to a monetary policy shock are consistent

with the evidence in Figure 2. If we are willing to define a hump shape, as most macro-

economists are prone to be based on our reading of the VAR literature, we can run an

iterative search on the response functions contained in the 68% joint confidence set to

determine whether any of the response functions in the set are inconsistent with a hump

shape. Evidence that all response functions in the 68% confidence set are hump-shaped

would lead us to reject the hypothesis that there is no hump in the response function. Ev-

idence that none of the response functions in the set is hump-shaped, in contrast, would

imply a rejection of the hypothesis of a hump-shaped response. Evidence that some re-

sponse functions in the set are hump-shaped and some are not, would be imply that neither

hypothesis can be rejected at the 68% confidence level.

For example, for expository purposes, we may define a hump-shaped response func-

tion for U.S. real GNP as one whose maximum occurs between horizons 1 and 15. Given

that the response starts at zero by construction, effectively this definition rules out re-

sponse functions that reach their maximum at horizon 15. Table 4 shows that 28.6% of

the response functions in Figure 3 are not hump-shaped by this minimal definition of a

hump shape, so we cannot be confident at the 68% level that the response function of

U.S. real GNP is hump-shaped. The data in the shotgun plot are consistent with other

interpretations of the shape of the response function. Similar results also hold at the 95%

significance level.

This is more information than could have been gleaned from the joint confidence band.
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In this particular example, one could have inferred that there must be at least one response

function that is not hump-shaped from the fact that upper bound of the confidence band

peaks at horizon 15. On the other hand, one could not have inferred the presence of

hump-shaped response functions from the joint confidence band.

8.2 A VAR Model of the Stagflationary Effects of Oil Price

Shocks

Our second empirical example focuses on a hypothesis that involves multiple response

functions. Evidence that the economy remains below potential, while inflation continues

to rise, is inconsistent with the standard accelerationist model of the macroeconomy and

thus would seem to require a different explanation, presumably one based on domestic

supply shocks that shift the Phillips curve. A popular argument in macroeconomics has

been that oil price shocks in particular may act as such supply shocks for the U.S. economy.

Thus, the question of whether oil price shocks are stagflationary has a long tradition in

macroeconomics (see, e.g., Blanchard 2002; Barsky and Kilian 2004; Kilian 2008).

We address this question by postulating a VAR(4) model for the U.S. economy for

the percent change in the real WTI price of crude oil, GDP deflator inflation and real

GDP. The data are quarterly and the estimation period is 1987.I-2013.II. The starting

date was chosen for illustrative purposes, given evidence for a possible structural break in

the relationship between the real price of oil and U.S. real GDP in 1987. The dominant

autoregressive root is 085. The model is identified recursively with the real price of oil

ordered first. We focus on the effect of an unanticipated increase in the real price of oil

on the real price of oil, on the change in inflation and on U.S. real GDP growth.

Figure 3 shows that the shotgun plots for the change in inflation and for real GDP

growth cover the zero line at all horizons. This fact alone, however, tells us nothing about

the question of whether these responses are stagflationary. To assess the latter question we

need to look at these two response functions pairwise for each model in the joint confidence
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set and verify whether the responses of∆+ and∆+, where  stands for GDP deflator

inflation and ∆ for real GDP growth, to an oil price shock are of opposite sign for all

horizons  of interest. This may easily be accomplished with some extra code. Table

5 shows that, at the 68% significance level and looking jointly at horizons  = 1  15

not a single structural model estimate in the joint confidence set is consistent with the

hypothesis of stagflationary responses to oil price shocks. Thus, we can rule out that

hypothesis. One might have conjectured that increasing the confidence level would lead

us to revise this statement, but Table 5 shows that the same result holds at the 95%

significance level.

If we change the hypothesis of interest and focus on the first year following the oil

price shocks only, however, in about 0.5% of the models within the joint confidence set is

there evidence of a stagflationary response. In the remainder, there is not. Thus, the data

would not allow us to reject either hypothesis of interest at the 68% and 95% significance

levels.

It would have been tempting to conclude based on a joint confidence band that Figure 3

allows for stagflationary responses because both bands include positive as well as negative

values, so hypothetically a stagflationary response would fit within this confidence band for

 = 1  15. This conclusion, however, would have been wrong, considering the evidence in

Table 5 based on the shotgun plot. This example reinforces our point that joint confidence

bands obscure important information about the shapes of impulse response functions.

Figure 4 illustrates how the sets of response functions associated with the models in

the joint confidence region that exhibit stagflationary responses, as defined in Table 2,

may be highlighted within the shotgun plot. This allows us, for example, to infer that

none of these stagflationary models are associated with large reductions in real GDP. The

largest reduction in real GDP at horizon 15 that is contained in the joint confidence set

is -0.6 percent, so even if we cannot rule out stagflationary effects completely at the 68%

confidence level, we can be confident that such effects are not quantitatively important
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for real output. This is one more example in which the shotgun plot reveals additional

information not conveyed by confidence bands.

9 Conclusion

We considered the problem of constructing joint confidence sets for subsets of structural

impulse responses that remain asymptotically valid even when the joint limiting distri-

bution of the structural impulse responses becomes degenerate, which occurs when the

number of responses considered exceeds the number of model parameters. We made the

case that applied users should invert the joint Wald test statistic to obtain such a joint

confidence set. We considered two alternative specifications of the Wald test statistic.

Both are asymptotically valid and were shown to imply joint confidence sets with rea-

sonably accurate coverage in finite samples. Our simulation evidence suggested that in

the few cases, in which there is a noticeable difference in coverage accuracy, our preferred

specification is more accurate in finite samples.

We proposed to represent the sets of structural responses associated with the estimates

in the joint confidence set in the form of shotgun plots of the impulse response functions.

We made the case that this approach preserves additional information about the shape of

the impulse response functions that is lost when the results are presented in the form of

confidence bands. In fact, the use of shotgun plots is essential for answering many of the key

questions applied users want to answer based on structural VAR models. These questions

relate not so much to whether a particular set of responses is significantly different from

zero, although that question as well can be answered with the help of shotgun plots,

but whether multiple sets of response functions follow the shape and pattern implied by

economic theory. We demonstrated by example that the latter type of question cannot be

answered based on joint confidence bands, whether constructed from Bonferroni bounds

of by applying the projection method to Wald confidence sets. Appropriate answers can

be obtained, however, based on the shotgun plots of the impulse response functions.
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Our theoretical analysis involved a novel approach to approximating the distribution

of test statistics with an asymptotically singular covariance matrix that is distinct from

alternative approaches such as Andrews (1987) and is of independent interest for other

applications. Although we focused on the construction of joint confidence sets about

structural impulse responses, our results on bootstrapping Wald statistics for impulse

response vectors with a degenerate joint asymptotic distribution can also be applied in

a variety of other contexts. For example, they facilitate the design of statistical tests

about various features of structural impulse response functions (e.g., Lütkepohl 1996).

They also are relevant for the development of impulse response matching estimators of

the structural parameters of dynamic stochastic general equilibrium models (see Guerron-

Quintana, Inoue and Kilian 2014).

In this paper, we followed much of the VAR literature on impulse response analysis by

focusing on Wald test statistics. An obvious extension would be to apply our approach to

the LR test statistic. We defer this extension to future research, given the high coverage

accuracy of the Wald confidence region in our simulation study.
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10 Technical Appendix

Proof of Theorem 1.

It follows from the Schur decomposition theorem (Theorem 13 of Magnus and Neudecker,

1999, p.16) that there exists an orthonormal matrix  whose columns are eigenvectors of

0
0
0 and a diagonal matrix Λ whose diagonal elements are the eigenvalues of 0

0
0 such

that

0000 = Λ (23)

Stack the eigenvectors associated with the  largest eigenvalues of 0
0
0 in 0 and let

0 = . Using a subset of the  − 0 remaining eigenvectors that are not used in 0, form

1 such that 
0
11 contains no row vector of zeros. Let 1 denote the number of columns

in 1. Using a subset of the −0− · · ·−−1 remaining eigenvectors, that are not used in
0, 1,...−1, form  so that 

0
 contains no row vector of zeros. Let  be the number

of columns in  . Stop when 0 + 1 + · · · +  = . With some abuse of notation, let

 = [1 2 · · · ]. Then it follows from the definition of  and Assumption (b) that

Υ
0((̄ )− ()) = 00 + −

1
201( ⊗  ) + (

− 1
2 )

=

⎡⎢⎢⎣
000

011( ⊗  )
...

0( ⊗ · · ·⊗  )

⎤⎥⎥⎦+ (1) (24)

It furthermore follows from (24) and Assumption (a) that

Υ
0((̄ )− ())

→

⎡⎢⎢⎣
000

011( ⊗ )
...

0( ⊗ · · ·⊗ )

⎤⎥⎥⎦  (25)

Because of Assumptions (a) and (b) and because of the continuity of eigenvalues and

eigenvectors as a function of matrices, we also know that

Υ
0((̄∗

 )− (̄ ))
→

⎡⎢⎢⎣
000

∗
011(

∗ ⊗ ∗)
...

0(
∗ ⊗ · · ·⊗ ∗)

⎤⎥⎥⎦  (26)

where the convergence is with respect to the bootstrap probability measure conditional

on the data with probability one, Therefore Theorem 1 follows from (25) and (26).

Proof of Theorem 2. It follows from (26) that the limiting covariance matrix of
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Υ
0((̄ )− ()) is

 = 

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

000
011( ⊗ )

...
0( ⊗ · · ·⊗ )

⎤⎥⎥⎦
⎡⎢⎢⎣

000
011( ⊗ )

...
0( ⊗ · · ·⊗ )

⎤⎥⎥⎦
0⎫⎪⎪⎬⎪⎪⎭  (27)

Similarly, the limiting covariance matrix of Υ
0((̄∗

 )− (̄ )) is also (27) conditional

on the data with probability one. It follows from Assumption (c) that

Υ
0bΣ∗Υ

→  (28)

Theorem 2 follows from Theorem 1, (27) and (28).
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Table 1: Relative Volumes of Bonferroni and Wald Confidence Regions 
 

 Confidence level 1 0.9   
M 

1B
  ,

1
bandW 
  1W 

  

2 1.01   1.22 0.95 
3 1.02   1.65 0.87 
4 1.03   2.46 0.76 
5 1.03   3.94 0.65 
6 1.04   6.67 0.54 
7 1.05 11.89 0.44 
8 1.05 22.17 0.35 
9 1.06 43.02 0.28 
10 1.07 86.54 0.22 

 

NOTES: The volume of the 1  confidence region refers to an M -dimensional cube, where M  
is the length of the vector .  All results are normalized relative to the volume of the joint 
confidence region associated with the precise confidence box that represents the tightest two-
dimensional confidence box possible. 1B

  refers to the joint confidence region implied by 

Bonferroni confidence band. ,
1

bandW 
  refers to the joint confidence region implied by the 

confidence band proposed in Lütkepohl et al. (2014), and 1W 
  relates to the joint confidence 

region implied by the Wald test statistic. 
 
 

Table 2: Joint inference for all impulse responses at horizon 0,...,17h  in a  
monthly oil market VAR model 

 

    Coverage Rates (%)  
 

1W 
   ( )

1W  
  1B

   

Nominal 68 95  68 95 68 95  
6p   70.8 93.8  63.0 93.8 84.0 97.0  

12p   65.6 96.0  65.4 94.0 80.6 98.0  

24p   67.2 94.2  71.6 95.4 78.8 98.0  
 

NOTES: Coverage rates based on 500 trials, each of which involves 1,0001,000 bootstrap 
replications. The model is motivated by the analysis in Kilian (2009). Based on the oil market 
data set in Kilian (2009), alternative DGPs are constructed for lag orders  6,12, 24 .p  1W 

  

and ( )
1W  
 stand for the two alternative joint Wald confidence regions discussed in section 6 and 

1B
 for the Bonferroni set. 

 
 
 
 



Table 3: Joint inference for all responses to the monetary policy shock at horizon 
0,...,15h   in a quarterly monetary policy VAR model 

 

    Coverage Rates (%)  
 

1W 
   ( )

1W  
  1B

   

Nominal 68 95  68 95 68 95  
4p   63.4 93.2  61.0 92.0 87.6 98.2  

6p   66.4 93.4  64.2 93.0 87.6 98.0  

8p   66.4 92.2  62.6 89.2 83.2 96.4  
 

NOTES: Coverage rates based on 500 trials, each of which involves 1,0001,000 bootstrap 
replications. The DGP is a prototypical recursively identified monetary policy VAR model for 
U.S. deflator inflation, real GDP growth and the federal funds rate, as discussed in Kilian (2013). 
Based on data for 1954.III-2007.IV, alternative DGPs are constructed from the fitted models for 
lag orders  4, 6,8 .p 1W 

  and ( )
1W  
 stand for the two alternative joint Wald confidence 

regions discussed in section 6 and 1B
 for the Bonferroni set. 

 
 
Table 4: Percentage of models in joint Wald confidence set consistent with a hump-shaped 

response function of real GNP to an unexpected loosening of monetary policy 
  

 

 
 
 
 
NOTES: Based on the model underlying Figure 2 and a minimal definition of a hump shaped 
response as a response reaching its maximum between horizon 1 and 15.  
 
 

Table 5: Percentage of models in joint Wald confidence set inconsistent with a 
stagflationary response to an unexpected increase in the real price of oil 

  

 Joint Confidence Level 
Horizons ( h ) 68% 95% 

1,…,15 100.0% 100.0% 
1,…,4 99.5% 99.4% 

 

NOTES: Based on the model underlying Figure 3. The stagflation hypothesis translates to the 

responses of t h   and t hy   to the oil price shock being of opposite sign for all h  of interest 

and the inflation acceleration being positive at horizon 1. 

Joint Confidence Level 
68% 95% 

71.4%  72.4% 
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Figure 1: Responses to an Unexpected Tightening of Monetary Policy 

Shotgun Plot Implied by Joint 68% Wald Confidence Set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
NOTES: Estimates based on a VAR(4) model with intercept including deflator inflation, real GNP growth and the federal funds rate 
obtained by fitting U.S. data for 1959.I-2007.IV  All results based on 2,0002,000 bootstrap replications. 
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Figure 2: Responses of U.S. Real GNP to an Unexpected Loosening of Monetary Policy 
Shotgun Plot Implied by Joint 68% Wald Confidence Set 

 
 
 

 
 
 
 
 
 
 
 

NOTES: Obtained from Figure 2 by cumulating the responses of the growth rate of real GNP and flipping the sign. The joint 
confidence band obtained by constructing an envelope around the shotgun plot is shown as bold lines. 
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Figure 3: Responses to an Unexpected Increase in the Real Price of Oil 
Shotgun Plot Implied by Joint 68% Wald Confidence Set 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
NOTES: Estimates based on a VAR(4) model with intercept including the real price of oil, GDP deflator inflation, and  real GDP 
growth obtained by fitting U.S. data for 1987.I-2013.II. All results based on 2,0002,000 bootstrap replications. 
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Figure 4: Responses to an Unexpected Increase in the Real Price of Oil 
Shotgun Plot Implied by Joint 68% Wald Confidence Set with Subset of Stagflationary Responses Highlighted 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: The pairs of response functions associated with the 3% of models in the 68% joint confidence set that exhibit stagflationary 
responses at horizons 0,..., 4  and a positive inflation acceleration response at horizon 1 are highlighted as dark dotted lines. There are 
no models with stagflationary responses at all horizons. 


