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Abstract

In this paper we establish the consistency of the model selection criterion based on

the quasi-marginal likelihood obtained from Laplace-type estimators (LTE). We con-

sider cases in which parameters are strongly identified, weakly identified and partially

identified. Our Monte Carlo results confirm our consistency results. Our proposed

procedure is applied to select among monetary macroeconomic models using US data.
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1 Introduction

Thanks to the development of fast computers and accessible software packages, Bayesian

methods are now commonly used in the estimation of macroeconomic models. Bayesian

estimators get around numerically intractable and ill-shaped likelihood functions, to

which maximum likelihood estimators tend to succumb, by incorporating economically

meaningful prior information. In a recent paper, Christiano, Trabandt and Walentin

(2011) propose a new method of estimating a standard macroeconomic model based

on the criterion function of the impulse response function matching estimator of Chris-

tiano, Eichenbaum and Evans (2005) combined with prior density. Instead of relying

on a correctly specified likelihood function, they define an approximate likelihood func-

tion and proceed with a random walk Metropolis-Hastings algorithm. Chernozhukov

and Hong (2003) establish that such an approach has a frequentist justification in a

more general framework and call it a Laplace-type estimator (LTE) or quasi-Bayesian

estimator.1 Other applications of LTEs to estimate macroeconomic models include

Christiano, Eichenbaum and Trabandt (2013) and Kormilitsina and Nekipelov (2013).

When two or more competing models are available, it is of great interest to select one

model for policy analysis. When competing models are estimated by Bayesian methods,

the models are often compared by their marginal likelihood. It is quite intuitive to

compare models estimated by LTE using the “marginal likelihood” obtained from the

LTE criterion function. In fact, Christiano, Eichenbaum and Trabandt (2013, Table 4)

report the marginal likelihoods from LTE when they compare the performance of their

macroeconomic model of wage bargaining with that of a standard labor search model.

In this paper, we prove that such practice is asymptotically valid in that a model with

a larger value of its marginal likelihood is either correct or a better approximation to

true impulse responses with probability approaching one as the sample size goes to

infinity.

We consider the consistency of model selection based on the marginal likelihood in

three cases: (i) parameters are all strongly identified; (ii) some parameters are weakly

1We follow Chernozhukov and Hong (2003) and use the term “quasi-Bayesian” in our paper. However,

it should be noted that the same term also refers to the procedure that involves data-dependent prior or

multiple priors in the Bayesian literature.
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identified; and (iii) some model parameters are partially identified. While case (i) is

standard in the model selection literature (e.g., Phillips, 1996; Sin and White, 1996),

cases (ii) and (iii) are also empirically relevant because some parameters may not be

strongly identified in macroeconomic models (see Canova and Sala, 2009). We consider

the case of weak identification using a device that is similar to Stock and Wright (2000)

and Guerron-Quintana, Inoue and Kilian (2013). We also consider the case in which

parameters are set identified as in Chernozhukov, Hong and Tamer (2007) and Moon

and Schorfheide (2009).

Our approach allows for model misspecification and is similar in spirit to the

Bayesian model selection procedure considered by Schorfheide (2000). Instead of using

the marginal likelihoods (or the standard posterior odds ratio) directly, Schorfheide

(2000) introduces the VAR model as a reference model in the computation of the loss

function so that he can compare the performance of possibly misspecified dynamic

stochastic general equilibrium (DSGE) models in the Bayesian framework. The re-

lated DSGE-VAR approach of Del Negro and Schorfheide (2004, 2009) also allows

DSGE models to be misspecified, which results in a small weight on the DSGE model

obtained by maximizing the marginal likelihood of the DSGE-VAR model. An advan-

tage of our approach is that we can directly compare the (quasi-) marginal likelihoods

even if all the competing DSGE models are misspecified.2

Using the frequentist framework, Corradi and Swanson (2007), Dridi, Guay and

Renault (2007) and Hnatkovska, Marmer and Tang (2012), among others, propose the

hypothesis testing procedures to evaluate the relative performance of possibly misspeci-

fied DSGE models. Among these studies, Hnatkovska, Marmer and Tang (2012) is most

closely related to our approach in that their test statistic is based on the estimated ob-

jective function of impulse response matching, namely, the estimated distance between

impulse responses of the estimated DSGE model and VAR model. While our method

can be interpreted as a frequentist approach, it differs from their testing approach as

we proposes a consistent model selection procedure.

The outline of this paper is as follows: Asymptotic justifications for the quasi-

2As established in White (1982), desired asymptotic results can be often obtained even if the likelihood

function is misspecified. The quasi-Bayesian approach is also closely related to the limited-information

likelihood principle used by Zellner (1998) and Kim (2002) among others.
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marginal likelihood model selection criterion are established in Section 2. Compu-

tational issues are discussed in Section 3. A small set of Monte Carlo experiments

is provided in Section 4. An empirical application is illustrated in Section 5. The

concluding remarks are made in Section 6. All proofs are relegated to the appendix.

2 Asymptotic Theory

Let γA denote a kA × 1 vector of structural impulse responses obtained from a VAR

model and f(α) be a kA× 1 vector of structural impulse responses implied by a DSGE

model when the value of structural parameters is given by α ∈ A where A ⊂ <pA . The

impulse response function matching estimator of Christiano, Eichenbaum and Evans

(2005) minimizes the criterion function

q̂A,T (α) =
1

2
(γ̂A,T − f(α))′ŴA,T (γ̂A,T − f(α))

with respect to α ∈ A, where γ̂A,T is a kA × 1 vector of structural impulse responses

obtained from an estimated VAR model, and ŴA,T is a kA × kA positive semidefi-

nite weighting matrix.3 Following Chernozhukov and Hong (2003), define the quasi-

posterior by

(2π/T )−
kA
2 |ŴA,T |

1
2 e−T q̂A,T (α)πA(α)∫

A(2π/T )−
kA
2 |ŴA,T |

1
2 e−T q̂A,T (α)πA(α)dα

,

where πA(α) is the prior probability density function. This Laplace-type estimator is

particularly useful when the criterion function q̂A,T (α) is not numerically tractable or

when extremum estimates are not reasonable.

We propose quasi-marginal likelihoods (QMLs) for selecting a model and establish

the consistency of the model selection based on QMLs. Suppose that we compare

DSGE models, models A and B. Models A and B are parameterized by structural

parameter vectors, α ∈ A and β ∈ B, where A ⊂ <pA and B ⊂ <pB , and imply vectors

of structural impulse responses, f(α) and g(β), of dimensions kA × 1 and kB × 1,

respectively. While the competing models are typically estimated from the same set of

3Jórda and Kozicki (2011) develop a projection minimum distance estimator that is based on restrictions

of the form of h(γ, α) = 0. While we could consider a quasi-Bayesian estimator based on such restrictions,

we focus on the special case in which h(γ, α) = γ − f(α).
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impulse responses in practice, we also allow for the case in which they are estimated

from different sets of impulse responses.

Define the quasi-marginal likelihood for model A by

mA = (2π/T )−
kA
2 |ŴA,T |

1
2

∫
A
e−

T
2

(γ̂A,T−f(α))′ŴA,T (γ̂A,T−f(α))πA(α)dα

= (2π/T )−
kA
2 |ŴA,T |

1
2

∫
A
e−T q̂A,T (α)πA(α)dα. (1)

Similarly, define the quasi-marginal likelihood for model B by

mB = (2π/T )−
kB
2 |ŴB,T |

1
2

∫
B
e−

T
2

(γ̂B,T−g(β))′ŴB,T (γ̂B,T−g(β))πB(β)dβ

= (2π/T )−
kB
2 |ŴB,T |

1
2

∫
B
e−T q̂B,T (β)πB(β)dβ, (2)

where γ̂B,T is a kB×1 vector of structural impulse responses obtained from an estimated

VAR model and ŴB,T is a kB × kB positive semidefinite weighting matrix.

Let

qA(α0) =
1

2
(γA,0 − f(α0))′WA(γA,0 − f(α0)), (3)

qB(β0) =
1

2
(γB,0 − g(β0))′WB(γB,0 − f(β0)), (4)

where γA,0 and γB,0 are vectors of population structural impulse responses, α0 and

β0 are the (possibly pseudo) true parameter values of α and β, and WA and WB are

positive definite matrices.

We say that the quasi-marginal likelihood model selection criterion is consistent if

the following property holds: mA > mB [mA < mB] with probability approaching one

if qA(α0) < qB(β0) [qA(α0) > qB(β0)].

2.1 The Case of Strongly Identified Parameters

First, consider the case in which the parameters are strongly identified, that is, there

are unique parameter values of α and β that minimize the impulse response matching

criterion functions in population, qA(α) and qB(β). Note that strong identification

does not necessarily imply that the models are correctly specified because it is possible

that qA(α0) > 0 or qB(β0) > 0. We will assume the following conditions:
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Assumption 1

(a) A and B are compact in <pA and <pB , respectively.

(b) There exist α0 ∈ intA and β0 ∈ intB such that for every ε > 0

inf
α∈A:‖α−α0‖≥ε

qA(α) > qA(α0),

inf
β∈B:‖β−β0‖≥ε

qB(β) > qB(β0),

where qA(α) and qB(β) are defined in (3) and (4), respectively.

(c) supα∈A |q̂A,T (α)− qA(α)| = op(1) and supβ∈B |q̂B,T (β)− qB(β)| = op(1), where

q̂A,T (α) =
1

2
(γ̂A,T − f(α))′ŴA,T (γ̂A,T − f(α)),

q̂B,T (β) =
1

2
(γ̂B,T − g(β))′ŴB,T (γ̂B,T − g(β)).

(d) f : A→ <kA and g : B → <kB are twice continuously differentiable in the interior

of A and B, and their Jacobian matrices ∂f(α0)/∂α′ and ∂g(β0)/∂β′ have rank

pA and pB, respectively.

(e) πA : A → <+ and πB : B → <+ are continuous in neighborhoods of α0 and β0

with πA(α0) > 0 and πB(β0) > 0, respectively.

(f) ŴA,T and ŴB,T are positive semidefinite with probability one and converge in

probability to positive definite matrices WA and WB, respectively.

Remarks

1. In this subsection we assume that the parameters are globally identified (Assump-

tion 1b). Because WA and WB are positive definite (Assumption 1b) and the Jacobian

matrices are of full rank (Assumption 1d), the Hessian matrices of qA(α) and qB(β)

are positive definite. Thus the parameters are also strongly identified under our as-

sumptions.

2. Assumption 1c requires uniform convergence of q̂A,T (·) and q̂B,T (·) to qA(·) and qB(·),

respectively, which holds under more primitive assumptions. For example, suppose that

γ̂A,T
p→ γA,0 and ŴA,T

p→ WA. Then pointwise convergence of q̂A,T (α) to qA(α)

holds, i.e., q̂A,T (α)
p→ qA(α) for each α ∈ A. Because f is continuously differentiable

(Assumption 1d), it follows that qA(α) is uniformly continuous and that q̂A,T (α) is

a Lipschitz function. It follows from Lemma 1(a) of Andrews (1992, p. 246) that
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q̂A,T (α) is stochastically equicontinuous. By Theorem 1 of Andrews (1992, p. 245),

Assumption 1c follows from the compactness of the parameter spaces (Assumption 1a)

and the stochastic equicontinuity.

3. Typical prior densities are continuous in macroeconomic applications, and Assump-

tion 1(e) is likely to be satisfied.

To establish the consistency of quasi-marginal likelihood model selection criteria, it is

useful to consider Laplace approximations of quasi-marginal likelihoods.

Lemma 1 (Validity of Laplace Approximations). Suppose that Assumption 1 holds: Then

the following Laplace approximations to the quasi-marginal likelihoods hold:

mA = e−T q̂A,T (α̂T )

(
T

2π

) kA−pA
2

πA(α̂T )|ŴA,T |
1
2 |∇2q̂A,T (α̂T )|−

1
2 (1 + op(1)), (5)

mB = e−T q̂B,T (β̂T )

(
T

2π

) kB−pB
2

πB(β̂T )|ŴB,T |
1
2 |∇2q̂B,T (β̂T )|−

1
2 (1 + op(1)), (6)

where α̂T and β̂T are the classical minimum distance estimators of α and β, respectively,

i.e., α̂T = argminα∈Aq̂A,T (α) and β̂T = argminβ∈B q̂B,T (β).

While one could use Laplace approximations rather than estimate the quasi-marginal

likelihood, it may not be feasible to compute Laplace approximations when identi-

fication is not strong. We use these approximations as a device for analyzing the

asymptotic behavior of the quasi-marginal likelihood.

Hnatkovska, Marmer and Tang (2012) develop a Vuong-type quasi-likelihood ratio

test for comparing macroeconomic models estimated by classical minimum distance

estimators when γ̂A,T = γ̂B,T , γA,0 = γB,0 and kA = kB. They consider cases of (i)

nested, (ii) strictly non-nested and (iii) overlapping models. Let F = {γ ∈ <kA : γ =

f(α) for some α ∈ A} and G = {γ ∈ <kB : γ = g(β) for some β ∈ B}. Following

Vuong’s (1989) definition, we say that models A and B are nested if F ⊂ G or G ⊂ F ,

strictly nonnested if F ∩ G = ∅ and overlapping if they are neither nested or strictly

nonnested. When the models are equally (in)correctly specified in terms of matching

impulse responses, i.e., qA(α0) = qB(β0), Hnatkovska et al. (2012) show that q̂A,T (α̂T )−

q̂B,T (β̂T ) = Op(T
−1) if the models are nested and that q̂A,T (α̂T )− q̂B,T (β̂T ) = Op(T

− 1
2 )
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if they are strictly nonnested or overlapping under some primitive assumptions.4 First,

we consider the case in which the models are nested.

Theorem 1 (Nested Models). Suppose that Assumption 1 holds.

(a) If qA(α0) < qB(β0) [qA(α0) > qB(β0)], then mA > mB [mA < mB] with probabil-

ity approaching one.

(b) If qA(α0) = qB(β0) and kA−pA > kB−pB [kA−pA < kB−pB] and if q̂A,T (α̂T )−

q̂B,T (β̂T ) = Op(T
−1), then mA > mB [mA < mB] with probability approaching

one.

Remarks

1. Theorem 1(a) shows that the proposed marginal likelihood model selection criterion

selects the model with a smaller population impulse response matching criterion func-

tion with probability approaching one. Theorem 1(b) implies that, if the minimized

population criterion functions take the same value, our model selection criterion will

select the model with a greater number of overidentifying restrictions. This result is

somewhat similar to that of Andrews’ (1999) criterion, which selects as many correctly

specified moment conditions as possible by including a bonus term that is increasing in

the number of overidentifying restrictions. In the typical case in which the two models

are estimated from the same set of impulse responses, i.e., γA,0 = γB,0 and kA = kB,

this result implies that the more parsimonious model will be chosen. In the special

case where Model A is correctly specified and is a restricted version of Model B, our

criterion will select Model A.

2. This consistency result applies whether or not the models are correctly specified

or misspecified. If one model is correctly specified in that its minimized population

criterion function is zero, while the other model is misspecified in that its minimized

population criterion function is positive, our model selection criterion will select the

correctly specified model with probability approaching one. Arguably, it may still make

sense to minimize the criterion function even when two models are misspecified. Our

model selection criterion will select the better approximating model with probability

4Technically, even in the overlapping case, if f(α0) = g(β0) we have q̂A,T (α̂T )− q̂B,T (β̂T ) = Op(T
−1).
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approaching one.

Next consider the case in which the two models are strictly nonnested or overlapping.

Theorem 2 (Strictly Nonnested or Overlapping Models). Suppose that Assumption 1

holds.

(a) If qA(α0) < qB(β0) [qA(α0) > qB(β0)], then mA > mB [mA < mB] with probabil-

ity approaching one.

(b) If qA(α0) = qB(β0) and T 1/2(q̂A,T (α̂T )− q̂B,T (β̂T )) converges in distribution to a

nondegenerate zero-mean symmetric distribution, then mA > mB with probabil-

ity approaching one half.

Remarks. As in Theorem 1(a), Theorem 2(a) shows that the proposed marginal like-

lihood model selection criterion selects the model with a smaller population crite-

rion function with probability approaching one. Unlike Theorem 1(b), however, the

marginal likelihood does not necessarily select a more parsimonious model even asymp-

totically, when qA(α0) = qB(β0) and f(α0) 6= g(β0).

It is highly unlikely that different structural macroeconomic models match impulse

responses equally well in the limit with the condition, f(α0) 6= g(β0). In such rare

situations, however, one may still prefer a more parsimonious model based on Occam’s

razor or if a selected model is to be used for forecasting (Inoue and Kilian, 2006). For

that purpose we propose the following modified quasi-marginal likelihood:

m̃A = mAe
(T−
√
T )q̂A,T (α̂T ), (7)

m̃B = mBe
(T−
√
T )q̂B,T (β̂T ). (8)

The modified quasi-marginal likelihood effectively replaces e−T q̂A,T (α̂T ) in the Laplace

approximation (5) by e−
√
T q̂A,T (α̂T ), and remains consistent for both nested and nonnested

models. At the same time it selects a more parsimonious model even in the rare case

in which qA(α0) = qB(β0) and f(α0) 6= g(β0).

Theorem 3 (Modified Quasi-Marginal Likelihood). Suppose that Assumption 1 holds.

(a) If qA(α0) < qB(β0) [qA(α0) > qB(β0)], then m̃A > m̃B [m̃A < m̃B] with probabil-

ity approaching one.
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(b) If qA(α0) = qB(β0) and kA−pA > kB−pB [kA−pA < kB−pB] and if q̂A,T (α̂T )−

q̂B,T (β̂T ) = Op(T
− 1

2 ), then m̃A > m̃B [m̃A < m̃B] with probability approaching

one.

Remarks. The modified quasi-marginal likelihood selects a parsimonious model if two

models match impulse responses equally well, while it may have reduced power if one

model matches impulse responses strictly better than the other. We will investigate

this trade-off in Monte Carlo experiments.

2.2 The Case of Weakly Identified Parameters

It is well-known that some parameters of DSGE models may not be strongly identified.

See Canova and Sala (2009) for examples of weak identification in DSGE models.

It is therefore important to investigate asymptotic properties of our model selection

procedure in case some parameters are weakly identified.

Following Guerron-Quintana, Inoue and Kilian (2013), we define weak identification

in the minimum distance framework. Let α = [α′s α
′
w]′, A = As×Aw, β = [β′s β

′
w]′ and

B = Bs ×Bw. We replace f(α) and g(β) by

fT (α) = fs(αs) + T−
1
2 fw(α), (9)

gT (β) = gs(βs) + T−
1
2 gw(β), (10)

respectively, where fs : As → <kA , fw : A → <kA , gs : Bs → <kB , gw : B → <kB ,

As ⊂ <pAs and Bs ⊂ <pBs . Here αs and βs are strongly identified while αw and βw

are weakly identified.

Assumption 2

(a) A and B are compact in <pA and <pB , respectively.

(b) If pAs > 0 or pBs > 0 then there exist αs,0 ∈ intAs and βs,0 ∈ intBs such that for

every ε > 0

inf
αs∈As:‖αs−αs,0‖≥ε

qAs(αs) > qAs(αs,0),

inf
βs∈Bs:‖βs−βs,0‖≥ε

qBs(βs) > qBs(βs,0),
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where

qAs(αs) =
1

2
(γA,0 − fs(αs))′WA(γA,0 − fs(αs)),

qBs(βs) =
1

2
(γB,0 − gs(βs))′WB(γB,0 − gs(βs)).

(c) supα∈A |q̂A,T (α)− qA(αs)| = op(1) and supβ∈B |q̂B,T (β)− qB(βs)| = op(1).

(d) fs : As → <kA , fw : A → <kA , gs : Bs → <kB and gw : B → <kB are twice

continuously differentiable in the interior of A and B, and their Jacobian matrices

∂fs(αs,0)/∂α′s and ∂gs(βs,0)/∂β′s have rank pAs and pBs , respectively.

(e)

Fs(αs,0)′WAFs(αs,0) + [(γA,0 − fs(αs,0))′WA ⊗ IpAs ]
∂vec(Fs(αs,0)′)

∂α′s

and

Gs(βs,0)′WBGs(βs,0) + [(γB,0 − gs(βs,0))′WB ⊗ IpBs ]
∂vec(Gs(βs,0)′)

∂β′s

are nonsingular, where Fs(αs) = ∂fs(αs)/∂α
′
s and Gs(βs) = ∂gs(βs)/∂β

′
s.

(f) πA : A→ <+ and πB : B → <+ are continuous in α0 and β0 with πA(αs,0, αw) > 0

and πB(βs,0, βw) > 0 on sets of positive measure in Aw and Bw, respectively.

(g) ŴA,T and ŴB,T are positive semidefinite with probability one and converge in

probability to positive definite matrices WA and WB.

Remarks.

1. Assumptions 2(b)(c)(d)(f) for weakly identified parameters are almost identical to

Assumptions 1(b)(c)(d)(e) for strongly identified parameters.

2. In the proof, we consider a profile estimator of strongly identified parameters given

weakly identified parameters. Assumption 2(e) allows us to apply the implicit func-

tion theorem to write the profile estimator as a smooth function of weakly identified

parameters.

3. Assumption 2(e) can be interpreted as a rank condition for local identification

under possible misspecification. When the model is correctly specified, the assumption

simplifies to the conventional assumption that the Jacobian matrix, Fs(αs,0), is of full

rank.

11



Theorem 4 (Weak Identification). Suppose that Assumption 2 holds.

(a) If qAs(αs,0) < qBs(βs,0) [qAs(αs,0) > qBs(βs,0)], then mA > mB and m̃A > m̃B

[mA < mB and m̃A < m̃B] with probability approaching one as T →∞.

(b) If qAs(αs,0) = qBs(βs,0), kA−pAs > kB−pBs [kA−pAs < kB−pBs ] and q̂A,T (α̂T )−

q̂B,T (β̂T ) = Op(T
−1), then mA > mB and m̃A > m̃B [mA < mB and m̃A < m̃B]

with probability approaching one.

(c) If qAs(αs,0) = qBs(βs,0), kA−pAs > kB−pBs [kA−pAs < kB−pBs ] and q̂A,T (α̂T )−

q̂B,T (β̂T ) = Op(T
−1/2), then m̃A > m̃B [m̃A < m̃B] with probability approaching

one.

Remarks. Part (a) shows that our criteria select the model with a smaller value of the

population objective function. Part (b) shows that, when two nested models share the

same population objective function value, our criteria select a model with a greater

degree of overidentification (or a more parsimonious model if kA = kB). We show

in part (c) that, when two strictly nonnested or overlapping models share the same

population objective function value, only the modified marginal likelihood is useful for

selecting a more parsimonious model. Parts (b) and (c) are similar to Theorems 2(b)

and 3(b) except that the degree of parsimony is in terms of the number of strongly

identified parameters.

2.3 The Case of Partially Identified Parameters

We say that the parameters are partially identified if

A0 = {α0 ∈ A : qA(α0) = min
α∈A

qA(α)}

consists of more than one points (see Chernozhukov, Hong and Tamer, 2007). Moon

and Schorfheide (2012) lists macroeconometric examples in which this type of identifi-

cation arises. Similarly, we define

B0 = {β0 ∈ B : qB(β0) = min
β∈B

qB(β)}.

Assumption 3

(a) A and B are compact in <pA and <pB , respectively.
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(b) There exist A0 ⊂ A and B0 ⊂ B such that, for every α0 ∈ A0, β0 ∈ B0, ε > 0

inf
α∈(Ac0)−ε

qA(α) > qA(α0),

inf
β∈(Ac0)−ε

qB(β) > qB(β0),

where qA(α) and qB(β) are defined in (3) and (4), respectively, and

(Ac0)−ε = {α ∈ A : d(α,A0) ≥ ε},

(Bc
0)−ε = {β ∈ B : d(β,B0) ≥ ε}.

(c) supα∈A |q̂A,T (α)− qA(α)| = op(1) and supβ∈B |q̂B,T (β)− qB(β)| = op(1).

(d)
∫
A0
πA(α)dα > 0 and

∫
B0
πB(β)dβ > 0.

(e) ŴT is positive semidefinite with probability one and converges in probability to

a positive definite matrix W .

(f) A0 = {αs,0} × Ap,0 and B0 = {βs,0} × Bp,0 if some parameters are strongly

identified.

(g)

Fs(αs,0)′WAFs(αs,0) + [(γA,0 − fs(αs,0))′WA ⊗ IpAs ]
∂vec(Fs(αs,0)′)

∂α′s

and

Gs(βs,0)′WBGs(βs,0) + [(γB,0 − gs(βs,0))′WB ⊗ IpBs ]
∂vec(Gs(βs,0)′)

∂β′s

are nonsingular, where Fs(αs) = ∂fs(αs)/∂α
′
s and Gs(βs) = ∂gs(βs)/∂β

′
s.

Remarks.

1. Assumptions 3(b) and (d) are a generalization of Assumptions 1(b) and (e), respec-

tively, to sets.

2. When Assumption 3(f) holds, there are strongly identified parameters. Assumption

3(g) allows us to write a profile estimator of the strongly identified parameters as a

smooth function of partially identified parameters.

Theorem 5 (Partial Identification).

(a) Suppose that Assumption 3(a)–(e) holds. If minα∈A qA(α) < minβ∈B qB(β) [minα∈A qA(α) >

minβ∈B qB(β)], then mA > mB and m̃A > m̃B [mA < mB and m̃A < m̃B] with

probability approaching one as T →∞.
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(b) Suppose that Assumption 3 holds. If qAs(αs,0) = qBs(βs,0), kA − pAs > kB − pBs
[kA − pAs < kB − pBs ] and q̂A,T (α̂T )− q̂B,T (β̂T ) = Op(T

−1), then mA > mB and

m̃A > m̃B [mA < mB and m̃A < m̃B] with probability approaching one.

(c) Suppose that Assumption 3 holds. If qAs(αs,0) = qBs(βs,0), kA − pAs > kB − pBs
[kA − pAs < kA − pBs ] and q̂A,T (α̂T ) − q̂B,T (β̂T ) = Op(T

−1/2), then m̃A > m̃B

[m̃A < m̃B] with probability approaching one.

Remark. Theorem 5(a) shows that even in the presence of partially identified param-

eters, our criteria select a model with a smaller value of the population estimation

objective function. This result occurs because it is the value of the objective function,

not the parameter value, that matters to model selection.

3 Computational Issues

In this section, we describe three methods for computing the quasi-marginal likelihood:

Laplace approximations, Geweke’s (1998) modified harmonic estimator and the esti-

mator of Chib and Jeliazkov (2001). While these are standard methods for computing

marginal likelihood in Bayesian analyses, we present these methods for practitioners

who are interested in using the Laplace-type estimator.

To use the Laplace approximation, we evaluate

e−TqA(α̂T )

(
T

2π

) kA−pA
2

|ŴA,T |
1
2πA(α̂T )|∇2q̂A,T (α̂T )|−

1
2 , (11)

at the quasi-posterior mode, α̂T . In our Monte Carlo experiment, we use 20 randomly

chosen starting values for a numerical optimization routine to obtain the posterior

mode. The weighting matrix can be either the diagonal matrix whose diagonal el-

ements are the reciprocal of the bootstrap variances of impulse responses or the in-

verse of the bootstrap covariance matrix of impulse responses. In classical minimum

distance estimation of impulse response matching, it is quite common to use the di-

agonal weighting matrix because estimators based on the optimal weighting matrix

can be often economically implausible. We use 1,000 bootstrap replications to obtain

the bootstrap covariance matrix of impulse response function estimators in the Monte

Carlo experiments.
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For the modified harmonic mean estimator and the Chib-Jeliazkov estimator, we

follow the random walk Metropolis-Hastings algorithm in An and Schorfheide (2007).

The proposal distribution is N(α(j−1), cĤ−1) where α(0) = α̂T , c = 0.3 for j = 1,

c = 1 for j > 1 and Ĥ is the Hessian of the log-quasi-posterior evaluated at the

quasi-posterior mode.5 The draw α from N(α(j−1), c[∇2q̂A,T (α̂T )]−1) is accepted with

probability

min

(
1,

e−T q̂A,T (α)πA(α)

e−T q̂A,T (α(j−1))πA(α(j−1))

)
. (12)

In each Monte Carlo iteration, we use the second half of 100,000 draws to esti-

mate the marginal likelihood. To satisfy the generalized information equality of Cher-

nozhukov and Hong (2003), which is necessary for the validity of the MCMC method

for the Laplace-type estimator, we need to use the inverse of the bootstrap covariance

matrix of impulse response function estimators as ŴA,T . Thus, the optimal weighting

matrix is used for the modified harmonic mean estimator and the estimator of Chib

and Jeliazkov (2001) because they are calculated from MCMC draws.

For the modified harmonic mean estimator, we first evaluate

E(e−T q̂T (α)πA(α)w(α)) (13)

by the MCMC draws, where

w(α) =
1

(1− p)
1

((2π)pA |Ĉov(α)|)
1
2

exp

(
−(α− α̃T )′[Ĉov(α)]−1(α− α̃T )

2

)
×1((α− α̃T )′[Ĉov(α)]−1(α− α̃T ) < χ2

pA,1−p), (14)

α̃T is the quasi-posterior mean, Ĉov(α) is the quasi-posterior covariance matrix, χ2
pA,1−p

is the 100(1− p) percentile of the chi-square distribution with pA degrees of freedom.

The modified harmonic mean estimator is the reciprocal of (13). In our Monte Carlo

experiment p is set to 0.10.

For the estimator of Chib and Jeliazkov (2001), estimate the log of the quasi-

marginal likelihood by

lnπA(α̃T )− T q̂A,T (α̃T )− ln p̂A(α̃T ) (15)

where

p̂A(α) =
(1/J)

∑J
j=1 r(α

(j), α̃)φα̃,c2Σ̃(α(j))

(1/K)
∑K

k=1 r(α̃, α
(k))

(16)

5When the parameters are partially identified, we set c = 0.001 to increase the acceptance rate.
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where the numerator is evaluated using the second half of MCMC draws and the

denominator is evaluated using α(k) from N(α̃, c2Σ̃). In our Monte Carlo experiment,

K is set to 50,000. c2Σ̃ is either set to the one used in the proposal density or estimated

from the posterior draws.

To compute the modified quasi-marginal likelihood, we use

m̃A = mAe
(T−
√
T )q̂A,T (α̂T ), (17)

where mA is the Laplace approximation, the modified harmonic mean estimator or the

Chib-Jeliazkov estimator.

4 Monte Carlo Experiments

We conduct a simple Monte Carlo simulation for the purpose of investigating theoretical

predictions obtained in the previous sections. Here, we employ a simple model based

on one of the models considered by Canova and Sala (2009):

yt = Et(yt+1)− σ(it − Et(πt+1)) + u1t, (18)

πt = Et(πt+1) + κyt + u2t, (19)

it = Et(πt+1) + u3t, (20)

where u1t, u2t, u3t are independent iid standard normal random variables. Because the

solution is 
yt

πt

it

 =


1 0 −σ

κ 1 −σκ

0 0 1



u1t

u2t

u3t

 , (21)

we have covariance restrictions:

Cov([yt πt it]
′) =


1 + σ2 κ+ κσ2 −σ

κ+ σ2κ 1 + κ2 + σ2κ2 −σκ

−σ −σκ 1

 . (22)

We consider cases of strong identification, weak identification and partial identifica-

tion as well as cases of qA(α0) < qB(β0) and qA(α0) = qB(β0). In the first two designs,

design 1 and design 2, we use

f(σ, κ) = [1 + σ2, κ+ σ2κ, −σ, 1 + κ2 + σ2κ2, −σκ]′, (23)
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and the corresponding five elements in the covariance matrix of the three observed

variables, where we set σ = 1 and κ = 0.5. In these two designs, the parameters are

globally and locally identified. In design 1, the two parameters are estimated in model

A, while σ is estimated and the value of κ is set to a wrong parameter value, 1, in

model B. In other words, model A is correctly specified and model B is incorrectly

specified. In design 2, only one parameter (σ) is estimated and the value of κ is set to

the true parameter value in model A, while the two parameters are estimated in model

B. While the two models are both correctly specified in this design, model A is more

parsimonious than model B.

In the next two designs, design 3 and design 4, we use

f(σ, κ) = [κ+ σ2κ, 1 + κ2 + σ2κ2, −σκ]′ (24)

and the corresponding three elements of the covariance matrix are used. As κ ap-

proaches zero, the strength of identification of σ becomes weaker. We set σ = 1 and

κ = 0.5. Designs 3 and 4 correspond to designs 1 and 2. In design 3, model B is in-

correctly specified in that κ is set to 1. In design 4, the two models are both correctly

specified and model A is more parsimonious than model B.

In the last two design, designs 5 and 6, the parameters are partially identified in

that we estimate α and ζ and the restrictions depend on them only through κ =

(1 − α)(1 − 0.99α)ζ/α. We use the five restrictions used in designs 1 and 2, (23),

and we set σ = 1, α = 0.5 and ζ = 1 so that κ ≈ 0.5 as in design 1. In design 5,

two parameters, α and ζ, are estimated in model A, while the value of σ is set to the

correct value, 1, in model A and is set to an incorrect value, 0.5, in model B. In design

6, only α and ζ are estimated while the value of σ is set to the true value in model

A, whereas the three parameters are all estimated in model B. Note that in each of

the six designs, model A is always preferred to model B because model A is correctly

specified in designs 1, 3 and 5 and is more parsimonious in designs 2, 4 and 6. Table

1 summarizes the six designs.

The number of Monte Carlo replications is set to 1,000, the number of randomly

chosen initial values for numerical optimization is set to 20, and the number of Markov

Chain Monte Carlo draws is set to 100,000. The flat prior is used for all the parameters.

The sample sizes are 50, 100 and 200.
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We estimate the marginal likelihood of each model by ten methods: the Laplace

approximation with the diagonal weighting matrix, the Laplace approximation with

the optimal weighting matrix, the modified harmonic mean estimator, the estimator of

Chib and Jeliazkov with the analytical covariance matrix of the proposal density used

in the numerator of (16), their estimator with the covariance matrix estimated from

the posterior draws used in the numerator of (16) and the modified marginal likelihood

for each of these five estimators.

The optimal weighting matrix is used for the modified harmonic mean estimator,

the Chib and Jeliazkov estimators and their modified versions. The details of these

methods can be found in the preceding section. In designs 5 and 6, where the two

parameters are only partially identified, we find that the Hessian of the log-posterior

is never positive definite at the quasi-posterior mode and we do not use a Laplace

approximation because it is infeasible. In designs 5 and 6, we add 2−26I to the Hessian

of the log-posterior to make it positive definite.

Table 2 reports the probabilities of selecting model A when the parameters are

strongly identified. In design 1, our proposed criteria tend to select the correctly

specified model (model A) over the incorrectly specified model (model B) regardless of

the methods used to estimate the quasi-marginal likelihood. Because the modification

halves the divergence rate of the quasi-marginal likelihood, the frequencies of selecting

model A based on the modified quasi-marginal likelihood is not as high as those based

on the quasi-marginal likelihood.

In design 2, the frequencies of choosing model A based on the quasi-marginal likeli-

hood are not as high as those in design 1 because the consistency depends on logarithmic

rates as opposed to linear rates (in terms of the log quasi-marginal likelihood). As the

sample size grows, however, the probabilities approach one as expected. The modified

quasi-marginal likelihood performs better in this design.

Table 3 shows that the probability of selecting model A also tends to approach one

as the sample size increases, even when identification is weak (designs 3 and 4). In

design 3, the modified quasi marginal likelihood inherits its performance in design 1

and does not perform as well as the quasi marginal likelihood. Especially, the modified

quasi marginal likelihood based on the diagonal weighting matrix performs poorly in

design 3 and may require much larger sample sizes.
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When some parameters are partially identified, the methods also tend to select

model A with probability approaching one as the sample size grows. The Chib-Jeliazkov

estimator with estimated covariance matrix performs better than the one with analyt-

ical covariance matrix in design 6, and their performances are similar in design 5. The

modified quasi marginal likelihood does not perform well in design 5. This result may

be due to the poor performance of numerical optimization due to partial identification

which results in inaccurate modification factors for these criteria.

Overall, we find that the modified harmonic mean and Chib-Jeliazkov estimators

are less sensitive to properties of the Hessian of the log-posterior and perform well. Our

proposed modified quasi-marginal likelihood is less powerful than the quasi-marginal

likelihood when comparing a correct model and an incorrect model because of the

halved divergence rate. (cases considered in part (a) of Theorems 1–5).

5 Empirical Application

In this section, we apply our procedure to a more empirically relevant medium-sized

DSGE model originally developed by Christiano, Eichenbaum and Evans (2005) (here-

after CEE). In particular, we consider a modified version of the CEE model, which

has been estimated by Smets and Wouters (2007), Altig, Christiano, Eichenbaum and

Linde (2011), Christiano, Trabandt and Walentin (2011), and Christiano, Eichenbaum

and Trabandt (2013), among others. The model is one of the most commonly used

macroeconomic models among practitioners that incorporates the investment adjust-

ment cost, habit formation in consumption, sticky prices and wages and the inflation-

targeting monetary policy. In practice, this class of the model has been estimated

using various methods. For example, CEE and Altig, Christiano, Eichenbaum and

Linde (2011) employ the classical impulse response matching estimator, while Smets

and Wouters (2007) estimate the model using a standard Bayesian method. As a third

approach, Christiano, Trabandt and Walentin (2011), and Christiano, Eichenbaum and

Trabandt (2013) employ the quasi-Bayesian impulse response matching estimator, or

the Laplace-type estimator.

For the purpose of evaluating the relative importance of various frictions in the

model estimated by the standard Bayesian method, Smets and Wouters (2007) uti-
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lize the marginal likelihood. Their question is whether all the frictions introduced in

the canonical DSGE model are really necessary in order to describe the dynamics of

observed aggregate data. To answer this question, they compare marginal likelihoods

of estimated models when each of the frictions was drastically reduced one at time.

Among the sources of nominal frictions, they claim that both price and wage stickiness

are equally important while indexation is relatively unimportant in both goods and la-

bor markets. Regarding the real frictions, they claim that the investment adjustment

costs are most important. They also find that, in the presence of wage stickiness, the

introduction of variable capacity utilization is less important.

Here, we conduct a similar exercise using quasi-marginal likelihoods (QMLs) ob-

tained in the quasi-Bayesian impulse response matching estimation. The data and

estimated impulse response functions are identical to the ones used in Christiano, Tra-

bandt and Walentin (2011).6 They estimate a VAR(2) model of 14 variables using

the US quarterly data from 1951Q1 to 2008Q4. Then, a combination of short-run

and long-run restrictions is used to identify the responses to three types of shocks in

the economy: (i) a monetary policy shock, (ii) a neutral technology shock and (iii)

an investment-specific technology shock. All the specifications of shock processes we

employ here are same as those used in Christiano, Trabandt and Walentin (2011). In

respect to the monetary policy shock, the interest rate Rt is assumed to follow the

process given by

ln(Rt/R) = ρR ln(Rt−1/R) + (1− ρR) [rπ ln(πt+1/π) + ry ln(gdpt/gdp)] + εR,t

where gdpt is scaled real GDP and εR,t ∼ iid(0, σ2
R). The neutral technology Zt in log

is assumed to be I(1) with its growth generated from an iid process

gZ,t = γZ + εZ,t

where gZ,t = ln(Zt/Zt−1) and εZ,t ∼ iid(0, σ2
Z). The investment-specific technology Ψt

in log is also assumed to be I(1) but its growth is generated from an AR(1) process

given by

gΨ,t = (1− ρΨ)γΨ + ρΨgΨ,t−1 + εΨ,t

6See the data appendix of their paper for the detailed explanation.

20



where gΨ,t = ln(Ψt/Ψt−1) and εΨ,t ∼ iid(0, σ2
Ψ). The structural parameters are esti-

mated by matching the first 15 responses of selected 9 variables to 3 shocks, less 8 zero

contemporaneous responses to the monetary policy shock (so that the total number of

responses to match is 397).

Since our purpose is to evaluate the relative contribution of various frictions, we

estimate some additional parameters, such as the wage stickiness parameter ξw, wage

indexation parameter ιw and price indexation parameter ιp, which are fixed in the

analysis of Christiano, Trabandt and Walentin (2011).7 The list of estimated structural

parameters in our analysis, quasi-Bayesian estimates and the prior distribution, are

reported in Table 5. The estimated impulse response functions are provided in Figures

1, 2 and 3. This estimated model serves as the baseline model when we compare with

other models using QMLs.

We follow Smets and Wouters (2007) and divide the sources of frictions of the

baseline model into two groups. First, nominal frictions are sticky prices, sticky wages,

price indexation and wage indexation. Second, real frictions are investment adjustment

costs, habit formation, capital utilization. We estimate additional submodels, which

reduces the degree of each of the seven frictions. The computed QMLs for 8 models,

including the baseline model, are reported in Table 6. Both QMLs based on the

Laplace approximation and the modified harmonic mean estimator are reported. For

the reference, also included in the table are the original marginal likelihoods obtained

by Smets and Wouters (2007) based on the different estimation method applied to

the different data set. The first column shows the quasi-posterior mean of relevant

structural parameters of the baseline model along with the QML.

Let us first examine the relative role of nominal frictions. The second and third

columns show the results when the degree of nominal price and wage stickiness (ξp and

ξw) is set at 0.10, respectively. Consistent with Smets and Wouters (2007), the results

show the importance of both types of nominal frictions. Unlike the result obtained

by Smets and Wouters (2007), however, the QML deteriorates more by restricting the

degree of wage stickiness. The fourth and fifth columns show the results when the

price and wage indexation parameters (ιp and ιw) are set at 0.01, respectively. Again,

consistent with Smets and Wouters (2007), neither price nor wage indexation plays a

7In our analysis, both price markup and wage markup parameters are fixed at 1.2.
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very important role in terms of improving the value of QMLs. The value of QML is

similar to that of baseline model even when the price indexation parameter is restricted

to a very low value. In fact, when the wage indexation parameter is set at a small value,

QML seems to improve over the baseline model. Thus, we can conclude that Calvo-

type frictions in price and wage settings are empirically more important than the price

and wage indexation to past inflation. Let us now turn to the role of real frictions.

The remaining three columns show the results when each of investment adjustment

cost parameter (S′′), consumption habit parameter (b) and capital utilization cost

parameter (σa) is set at some small values. The results show that restricting habit

formation in consumption significantly reduces the QML compared to other two real

frictions, suggesting the relatively important role of the consumption habit. Our result

on the role of capital utilization costs is also somewhat similar to the one obtained by

Smets and Wouters (2007) in the sense that it has a relatively minor role in increasing

the fit of the model. Overall, our results seem to support the empirical evidence

obtained by Smets and Wouters (2007), despite the fact that our analysis is based on

a very different model selection criterion.

6 Concluding Remarks

In this paper we established the consistency of the model selection criterion based

on the quasi-marginal likelihood obtained from Laplace-type estimators (LTE). We

considered cases in which parameters are strongly identified and are weakly identified.

Our Monte Carlo results confirmed our consistency results. Our proposed procedure

was also applied to select an appropriate specification in monetary macroeconomic

models using US data.
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Appendix

Proof of Lemma 1.

Let α̂T = argminα∈Aq̂A,T (α), and β̂T = argminβ∈B q̂B,T (β). Under Assumptions

1(a)–(c), α̂T and β̂T uniquely exist with probability approaching one. It follows from

Theorem 2.1 of Newey and McFadden (1994, p.2121), their discussion on page 2122

and our Assumptions 1(a)–(c) that

α̂T
p→ α0, (25)

β̂T
p→ β0. (26)

Thus α̂T ∈ intA and β̂T ∈ intB with probability approaching one.

Let

Bε(α̂) = {α ∈ A : ‖α− α̂T ‖ < ε}

where ε > 0. Write the marginal likelihood as the sum of two integrals:

mA = (2π/T )−
kA
2 |ŴA,T |

1
2

∫
Bε(α̂T )

πA(α)e−T q̂A,T (α)dα

+(2π/T )−
kA
2 |ŴA,T |

1
2

∫
A\Bε(α̂T )

πA(α)e−T q̂A,T (α)dα. (27)

By Taylor’s theorem,

q̂A,T (α) = q̂A,T (α̂T )+∇q̂A,T (α̂T )′(α− α̂T )+
1

2
(α− α̂T )′∇2q̂A,T (ᾱT (α))(α− α̂T ) (28)

where ᾱT (α) is a point between α and α̂T . Thus the first integral on the right hand

side of (27) can be written as:∫
Bε(α̂T )

πA(α)e−T q̂A,T (α̂T )−T
2

(α−α̂T )′∇2q̂A,T (ᾱT (α))(α−α̂T )dα

= e−T q̂A,T (α̂T )

∫
Bε(α̂T )

πA(α)e−
T
2

(α−α̂T )′∇2q̂A,T (α̂T )(α−α̂T )dα+Op(ε)

= e−T q̂A,T (α̂T )

(
2π

T

) pA
2 ∣∣∇2q̂A,T (α̂T )

∣∣− 1
2 (1 + op(1)) +Op(ε). (29)

It follows from Assumption 1(b) that the second integral on the right hand side of (27)

can be bounded by∣∣∣∣∣
∫
A\Bε(α̂T )

πA(α)e−T q̂A,T (α)dα

∣∣∣∣∣ ≤
∫
A\Bε(α̂T )

πA(α)dαe−T infα∈A\Bε(α̂T ) q̂A,T (α)

= Op

(
e−T (q̂A,T (α̂T )+η)

)
(30)
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for some η > 0. It follows from (29) and (30) that the marginal likelihood can be

approximated by

mA = e−T q̂A,T (α̂T )

(
T

2π

) kA−pA
2

|ŴA,T |
1
2

∣∣∇2q̂A,T (α̂T )
∣∣− 1

2 (1 + op(1)). (31)

Similarly, we obtain

mB = e−T q̂B,T (α̂T )

(
T

2π

) kB−pB
2

|ŴB,T |
1
2

∣∣∣∇2q̂B,T (β̂T )
∣∣∣− 1

2
(1 + op(1)). (32)

Proof of Theorem 1(a). Without loss of generality, suppose that qA(α0) < qB(β0). It

follows from (31) and (32) that

ln

(
mA

mB

)
= −T (q̂A,T (α̂T )− q̂B,T (β̂T )) +

kA − pA − kB + pB
2

ln

(
T

2π

)
+ ln

(
πA(α̂T )

πB(β̂T )

)

+
1

2
ln


∣∣∣ŴA,T

∣∣∣∣∣∣ŴB,T

∣∣∣
− 1

2
ln

∣∣∇2q̂A,T (α̂T )
∣∣∣∣∣∇2q̂B,T (β̂T )
∣∣∣
+ op(1)

= T (qB(β0)− qA(α0)) + op(T ). (33)

Because qB(β0)− qA(α0) > 0, mA > mB with probability approaching one.

Proof of Theorem 1(b). Without loss of generality, suppose that qA(α0) = qB(β0) with

kA − pA > kB − pB. Then we have

ln

(
mA

mB

)
= −T (q̂A,T (α̂T )− q̂B,T (β̂T )) +

kA − pA − kB + pB
2

ln

(
T

2π

)
+ ln

(
πA(α̂T )

πB(β̂T )

)

+
1

2
ln


∣∣∣ŴA,T

∣∣∣∣∣∣ŴB,T

∣∣∣
− 1

2
ln

∣∣∇2q̂A,T (α̂T )
∣∣∣∣∣∇2q̂B,T (β̂T )
∣∣∣
+ op(1)

=
kA − pA − kB + pB

2
ln(T ) +Op(1). (34)

Because kA − pA − kB + pB > 0, mA > mB with probability approaching one.

Proof of Theorem 2(a). The proof of Theorem 2(a) is analogous to that of Theorem

1(a) and thus is omitted.

Proof of Theorem 2(b). When T
1
2 (q̂A,T (α̂T )− q̂B,T (β̂T )) converges in distribution to a
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nondegenerate zero-mean symmetric distribution,

T−
1
2 ln

(
mA

mB

)
= −

√
T (q̂A,T (α̂T )− q̂B,T (β̂T )) +

kA − pA − kB + pB
2

T−
1
2 ln

(
T

2π

)
+ T−

1
2 ln

(
πA(α̂T )

πB(β̂T )

)

+
1

2
T−

1
2 ln


∣∣∣ŴA,T

∣∣∣∣∣∣ŴB,T

∣∣∣
− 1

2
T−

1
2 ln

∣∣∇2q̂A,T (α̂T )
∣∣∣∣∣∇2q̂B,T (β̂T )
∣∣∣
+ op(1)

= −
√
T (q̂A,T (α̂T )− q̂B,T (β̂T )) + op(1) (35)

also converges in distribution to a nondegenerate zero-mean symmetric distribution.

Thus mA > mB with probability approaching one half.

Proof of Theorem 3(a). The proof of Theorem 3(a) is similar to that of Theorem 1(a)

with T replaced by T
1
2 and thus is omitted.

Proof of Theorem 3(b). Without loss of generality, suppose that qA(α0) = qB(β0) with

kA − pA > kB − pB. Then we have

ln

(
m̃A

m̃B

)
= −

√
T (q̂A,T (α̂T )− q̂B,T (β̂T )) +

kA − pA − kB + pB
2

ln

(
T

2π

)
+ ln

(
πA(α̂T )

πB(β̂T )

)

+
1

2
ln


∣∣∣ŴA,T

∣∣∣∣∣∣ŴB,T

∣∣∣
− 1

2
ln

∣∣∇2q̂A,T (α̂T )
∣∣∣∣∣∇2q̂B,T (β̂T )
∣∣∣
+ op(1)

=
kA − pA − kB + pB

2
ln(T ) +Op(1). (36)

Because kA− pA− kB + pB > 0, we have mA > mB with probability approaching one.

We will use the following lemma in the proof of Theorem 4:

Lemma 2. Suppose that Assumption 2 holds. Define a profile estimator of αs by

α̂s,T (αw) = argminαs∈As(γ̂T − f(αs, αw))′ŴA,T (γ̂T − f(αs, αw)) (37)

for each αw ∈ Aw. Then

sup
αw∈Aw

‖α̂s(αw)− αs,0‖ = Op(T
− 1

2 ), (38)

sup
αw∈Aw

|q̂A,T (α̂s,T (αw), αw)− q̂A,T (α̂s,T (αw,0), αw,0)| = Op(T
− 1

2 ), (39)

sup
αw∈Aw

∥∥vech
(
∇2
αs q̂A,T (α̂s,T (αw), αw)−∇2

αs q̂A,T (α̂s,T (αw,0), αw,0)
)∣∣ = Op(T

− 1
2 ), (40)
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for every αw,0 ∈ Aw.

Proof of Lemma 2.

Note that α̂s,T (αw) satisfies the first order conditions:

Fαs(α̂s,T (αw), αw)′ŴA,T (γ̂T − f(α̂s,T (αw), αw)) = 0pAs×1, (41)

where Fαs(α) = ∂f(α)/∂α′s. Let Ĵs and Ĵw denote the Jacobian matrices of the

left hand side of (41) with respect to αs and αw:

Ĵs = −Fαs(α̂s,T (αw), αw)′ŴA,TFαs(α̂s,T (αw), αw)

+[(γ̂T − f(α̂s,T (αw), αw))′ŴA,T ⊗ I]
∂vec(Fαs(α̂s,T (αw), αw))

∂α′s
, (42)

Ĵw = −T−
1
2Fαs(α̂s,T (αw), αw)′ŴA,TFαw(α̂s,T (αw), αw)

+T−
1
2 [(γ̂T − f(α̂s,T (αw), αw))′ŴA,T ⊗ I]

∂vec(Fαw(α̂s,T (αw), αw))

∂α′w

= Op(T
− 1

2 ), (43)

where Fαw(α) = ∂fw/∂α
′
w and Op(T

−1/2) is uniform in αw ∈ Aw because of the

compactness of A and twice continuous differentiability of f . By Assumption

2(e), Ĵs is nonsingular with probability approaching one. Thus, it follows from

(42), (43) and the implicit function theorem

∂α̂s,T (αw)/∂α′w = −Ĵ−1
s Ĵw = Op(T

− 1
2 ) (44)

where Op(T
−1/2) is uniform in αw ∈ Aw. It follows from the mean value theorem

and (44) that

α̂s,T (α′w)− α̂s,T (αw) = Op(T
− 1

2‖α′w − αw‖). (45)

Given the pointwise convergence α̂s,T (αw)
p→ αs,0 for each αw ∈ Aw (which is

straightforward to show), the compactness of Aw and stochastic equicontinuity

(45), we can strengthen the pointwise convergence to uniform convergence (38)

by Theorem 1 of Andrews (1992): (39) and (40) follow from (38) and other
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assumptions.

Proof of Theorem 4. Let

Bε(α̂s,T ) = {αs ∈ As : ‖αs − α̂s,T‖ < ε}.

where ε > 0. Then it follows from Assumptions 2(b) and 2(c) that∣∣∣∣∫
(As\Bε(α̂T ))×Aw

πA(α)e−T q̂A,T (α)dα

∣∣∣∣ ≤ ∫
(As\Bε(α̂T ))×Aw

πA(α)dαe−T infα∈(As\Bε(α̂T ))×Aw q̂A,T (α)

= O
(
e−T (q̂A,T (α̂T )+η)

)
, (46)

for some η > 0. Let αw,0 ∈ Aw. Using arguments similar to the one used to

obtain (30), we can write∫
Bε(α̂s,T )

πA(α)e−T q̂A,T (α)dα

=

∫
Bε(α̂s,T )

πA(α)e−T q̂A,T (α̂s,T (αw),αw)e−
T
2 (αs−α̂s,T (αw))′∇2

αs
q̂A,T (α̂s,T (αw),αw)(αs−α̂s,T (αw))dα+Op(ε),

=

∫
Bε(α̂s,T )

πA(α)e−T q̂A,T (α̂s,T (αw,0),αw,0)

×e−T2 (αs−α̂s,T (αw,0))′∇2
αs
q̂A,T (α̂s,T (αw,0),αw,0)(αs−α̂s,T (αw,0))dα(1 + op(1)) +Op(ε)

= e−T q̂A,T (α̂s,T (αw,0),αw,0)
(

2π

T

) pAs
2 ∥∥∇2

αs q̂A,T (α̂s,T (αw,0), αw,0)
∥∥− 1

2

∫
Aw

πA(αs,0, αw,0)(1 + op(1)) +Op(ε),

(47)

where the second equality follows from (38)–(40). Combining (46) and (47) we

obtain

mA = e−T q̂A,T (α̂s,T (αw,0),αw,0)

(
T

2π

) kA−pAs
2

×
∣∣∣ŴA,T

∣∣∣ 12 ∣∣∇2
αs q̂A,T (α̂s,T (αw,0), αw,0

∣∣− 1
2

∫
Aw

πA(αs,0, αw)(1 + op(1)).(48)

When there is no strongly identified parameter (pAs = 0), we have

mA = e−
T
2
γ̂′A,T ŴA,T γ̂A,T (1 + op(1)) (49)

and γ̂′T ŴT γ̂T plays the same role as q̂A,T (α̂s,T (αw,0), αw,0) in (48). Using argu-

ments similar to those used in the proof of Theorems 1, 2 and 3, Theorem 4(a),(b)

and (c) follow from (48) and (49).
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Proof of Theorem 5(a).

We can write∫
A

πA(α) exp (−T q̂A,T (α)) dα =

∫
A0

πA(α) exp (−T q̂A,T (α)) dα

+

∫
(Ac0)−ε

πA(α) exp (−T q̂A,T (α)) dα

+

∫
A\(A0∪(Ac0)−ε)

πA(α) exp (−T q̂A,T (α)) dα

= I1 + I2 + I3, say. (50)

It follows from Assumptions 3(a)(c) that

I1 =

∫
A0

πA(α) exp (−TqA(α)) dα + op

(∫
A0

πA(α) exp (−TqA(α)) dα

)
=

∫
A0

πA(α)dα exp (−TqA(α0)) dα + op (exp (−TqA(α0))) , (51)

for any α0 ∈ A0. It follows from Assumptions 3(a)(b)(c) that

I2 = op (exp (−TqA(α0))) . (52)

By letting ε → 0, the term I3 can be made arbitrarily small. Combining (50)–

(52), we can approximate the quasi marginal likelihood for model A by

mA =

(
T

2π

) kA
2 ∣∣∣ŴA,T

∣∣∣ 12 ∫
A0

πA(α)dα exp (−TqA(α0))+op

(
T
kA
2 exp (−TqA(α0))

)
.

(53)

Similarly, the quasi marginal likelihood for model B can be approximated by

mB =

(
T

2π

) kB
2 ∣∣∣ŴB,T

∣∣∣ 12 =

∫
B0

πB(β)dβ exp (−TqB(β0)) dβ+op

(
T
kB
2 exp (−TqB(β0))

)
,

(54)

for any β0 ∈ B0. Theorem 5(a) follows from (53) and (54).

To prove Theorem 5(b) and 5(c), we need the following lemma:

Lemma 3. Suppose that Assumption 3 holds. Define a profile estimator of αs by

α̂s,T (αp) = argminαs∈As(γ̂A,T − f(αs, αp))
′ŴA,T (γ̂A,T − f(αs, αp)) (55)
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for each αp ∈ Ap. Then

sup
αp∈Ap,0

‖α̂s(αp)− αs,0‖ = op(1), (56)

sup
αp∈Ap,0

|q̂A,T (α̂s,T (αp), αp)− q̂A,T (α̂s,T (αp,0), αp,0)| = op(1), (57)

sup
αp∈Ap,0

∥∥vech
(
∇2
αs q̂A,T (α̂s,T (αp), αp)−∇2

αs q̂A,T (α̂s,T (αp,0), αp,0)
)∣∣ = op(1), (58)

for any αp,0 ∈ Ap,0.

Proof of Lemma 3.

Note that α̂s,T (αp) satisfies the first order conditions:

Fαs(α̂s,T (αp), αp)
′ŴA,T (γ̂A,T − f(α̂s,T (αp), αp)) = 0pAs×1, (59)

for every ap ∈ Ap,0. Let Ĵs and Ĵp denote the Jacobian matrices of the left hand

side of (59) with respect to αs and αp are

Ĵs = −Fαs(α̂s,T (αp), αp)
′ŴA,TFαs(α̂s,T (αp), αp)

+[(γ̂A,T − f(α̂s,T (αp), αp))
′ŴA,T ⊗ I]

∂vec(Fαs(α̂s,T (αp), αp))

∂α′s
, (60)

Ĵp = −Fαs(α̂s,T (αp), αp)
′ŴA,TFαp(α̂s,T (αp), αp)

+[(γ̂A,T − f(α̂s,T (αp), αp))
′ŴA,T ⊗ I]

∂vec(Fαp(α̂s,T (αp), αp))

∂α′p
, (61)

where Fαp(α) = ∂f/∂α′p. because of the compactness of A and twice continuous

differentiability of f . By Assumption 3(e), Ĵs is nonsingular with probability

approaching one. Thus, it follows from (60), (61) and the implicit function

theorem

∂α̂s,T (αp)/∂α
′
p = −Ĵ−1

s Ĵp = Op(1). (62)

It follows from the mean value theorem and (62) that

α̂s,T (α′p)− α̂s,T (αp) = Op(‖α′p − αp‖), (63)

where αp, α
′
p ∈ Ap,0. Given the pointwise convergence α̂s,T (αp)

p→ αs,0 for

each αp ∈ Ap,0 (which is straightforward to show), the compactness of Ap and

stochastic equicontinuity (63), we can strengthen the pointwise convergence to
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uniform convergence (56) by Theorem 1 of Andrews (1992): (57) and (58) follow

from (56) and other assumptions.

Proof of Theorem 5(b).

Define

Bε(α̂s,T ) = {αs ∈ As : ‖αs − α̂s,T‖}.

The quasi-marginal likelihood of model A can be written as∫
A

πA(α) exp (−T q̂A,T (α)) dα

=

∫
Bε(α̂s,T )×Ap,0

πA(α) exp (−T q̂A,T (α)) dα

+

∫
((Bε(α̂s,T )×Ap,0)c)−ε

πA(α) exp (−T q̂A,T (α)) dα

+

∫
A\((Bε(α̂s,T )×A0)∪(Bε(α̂s,T )×A0)c))−ε)

πA(α) exp (−T q̂A,T (α)) dα

= I1 + I2 + I3, say. (64)

Given αp,0 ∈ Ap,0, we can write

I1 =

∫
Bε(α̂s,T )×Ap,0

πA(α)e−T q̂A,T (α)dα

=

∫
Bε(α̂s,T )

πA(α)e−T q̂A,T (α̂s,T (αp),αp)e−
T
2

(αs−α̂s,T (αp))′∇2
αs
q̂A,T (α̂s,T (αp),αp)(αs−α̂s,T (αp))dα+Op(ε),

=

∫
Bε(α̂s,T )

πA(α)e−T q̂A,T (α̂s,T ,αp,0)e−
T
2

(αs−α̂s,T (αp,0))′∇2
αs
q̂A,T (α̂s,T (αp,0),αp,0)(αs−α̂s,T (αp,0))dα+Op(ε),

= e−T q̂A,T (α̂s,T (αp,0),αp,0)

(
2π

T

) pAs
2 ∥∥∇2

αs q̂A,T (α̂s,T (αp,0), αp,0)
∥∥− 1

2

∫
Ap,0

πA(αs,0, αp)dαp(1 + op(1))

+Op(ε), (65)

where the second last equality follows from Lemma 3. Thus, as in Theorem 5(a), the

quasi-marginal likelihood can be approximated by

mA = e−T q̂A,T (α̂s,T (αp,0),αp,0)

(
T

2π

) kA−pAs
2

∣∣∣ŴA,T

∣∣∣ 12
×
∣∣∇2

αs q̂A,T (α̂s,T (αp,0), αp,0)
∣∣− 1

2

∫
Ap,0

πA(αs,0, αp)dαp(1 + op(1)) (66)

The rest of the proof is analogous to those of the previous theorems.
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Table 1: Simulation Design

True Model Model A Model B

Identification Design σ κ σ κ σ κ

Strong 1 1 0.5 estimated estimated estimated fixed at 1

2 1 0.5 estimated fixed at 0.5 estimated estimated

Weak 3 1 0.5 estimated estimated estimated fixed at 1

4 1 0.5 estimated fixed at 0.5 estimated estimated

Partial 5 1 α = 0.5 fixed at 1 estimated fixed at 0.5 estimated

ζ = 1 (α, ζ) (α, ζ)

6 1 α = 0.5 fixed at 1 estimated estimated estimated

ζ = 1 (α, ζ) (α, ζ)

Notes. In the cases of strong and partial identification (design 1,2,5 and 6),

f(σ, κ) = [1 + σ2, κ+ σ2κ, −σ, 1 + κ2 + σ2κ2, −σκ]′,

and the corresponding elements of the covariance matrix are used. In the cases of weak identification

(designs 3 and 4),

f(σ, κ) = [κ+ σ2κ, 1 + κ2 + σ2κ2, −σκ]′

and the corresponding elements of the covariance matrix are used instead. In the cases of partial

identification (designs 5 and 6), κ = (1 − α)(1 − 0.99α)ζ/α. Model A is correctly specified while

Model B is misspecified in designs 1, 3 and 5. Models A and B are both correctly specified and

Model A is more parsimonious than Model B in designs 2, 4 and 6.
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Table 5: Prior and Posteriors of Parameters of Baseline CEE Model

Prior Quasi-posterior

Parameter Dist. Mean Std Mean [5%, 95%]

Price-setting rule

Price stickiness ξp Beta 0.50 0.15 0.66 [0.60, 0.72]

Price indexation ιp Beta 0.50 0.15 0.49 [0.32, 0.72]

Wage stickiness ξw Beta 0.50 0.15 0.85 [0.83, 0.87]

Wage indexation ιw Beta 0.50 0.15 0.30 [0.11, 0.46]

Monetary policy rule

Interest smoothing ρR Beta 0.70 0.15 0.89 [0.88, 0.91]

Inflation coefficient rπ Gamma 1.70 0.15 1.51 [1.37, 1.65]

GDP coefficient ry Gamma 0.10 0.05 0.15 [0.10, 0.19]

Preference and technology

Consumption habit b Beta 0.50 0.15 0.75 [0.73, 0.78]

Inverse labor supply elast φ Gamma 1.00 0.50 0.14 [0.04, 0.25]

Capital share α Beta 0.25 0.05 0.25 [0.22, 0.28]

Cap util adjustment cost σa Gamma 0.50 0.30 0.32 [0.23, 0.46]

Investment adjustment cost S ′′ Gamma 8.00 2.00 10.4 [8.30, 12.9]

Shocks

Autocorr invest tech ρΨ Beta 0.75 0.15 0.55 [0.42, 0.61]

Std dev neutral tech shock σZ InvGamma 0.20 0.10 0.23 [0.21, 0.26]

Std dev invest tech shock σΨ InvGamma 0.20 0.10 0.17 [0.15, 0.20]

Std dev monetary shock σR InvGamma 0.40 0.20 0.48 [0.43, 0.54]

Note: Quasi-posterior distribution is evaluated using the random walk Metropolis-

Hastings algorithm.
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Table 6: Empirical Importance of the Nominal and Real Frictions

Nominal frictions Real frictions

Base ξp=0.1 ξw=0.1 ιp=0.01 ιw=0.01 S ′′=2 b=0.1 σa=0.1

Quasi-marginal likelihood

Laplace 370 341 146 369 373 327 279 366

MHM 366 340 143 368 371 326 276 364

Quasi-posterior mean

ξp 0.66 0.10 0.95 0.68 0.67 0.74 0.68 0.66

ιp 0.49 0.53 0.69 0.01 0.51 0.48 0.52 0.52

ξw 0.85 0.88 0.10 0.85 0.87 0.80 0.86 0.85

ιw 0.30 0.32 0.53 0.34 0.01 0.43 0.37 0.29

S ′′ 10.4 10.3 2.74 9.37 9.23 2.00 8.07 9.81

b 0.75 0.74 0.53 0.76 0.75 0.69 0.10 0.75

σa 0.32 0.44 0.62 0.35 0.32 0.39 0.26 0.10

SW -923 -975 -973 -918 -927 -1084 -959 -949

Note: QMLs based on Laplace approximation (Laplace approx.) and modified harmonic

mean (MHM) estimator.
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Figure 1: Impulse Responses to a Monetary Policy Shock
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Figure 2: Impulse Responses to a Neutral Technology Shock
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Figure 3: Impulse Responses to an Investment-specific Technology Shock
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