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Abstract

We develop the first nonparametric significance test for regression models with classical measure-

ment error in the regressors. In particular, the Cramér-von Mises test and the Kolmogorov-Smirnov

test for the null hypothesis E [Y |X∗, Z∗] = E [Y |X∗] are proposed when only noisy measurements

of X∗ and Z∗ are available. The asymptotic null distributions of the test statistics are derived and

a bootstrap method is implemented to obtain the critical values. Despite the test statistics being

constructed using deconvolution estimators, we show that the test can detect a sequence of local

alternatives converging to the null at the
√
n-rate. We also highlight the finite sample performance

of the test through a Monte Carlo study.

1 Introduction

R. A. Fisher stated, “in the investigation of living beings by biological methods, statistical tests of

significance are essential” (Fisher, 1929, pp. 191). In this paper, we propose the first nonparametric

significance test for data contaminated with classical measurement error. The test is flexible in that

the measurement error may enter through the variables being tested, the controlling variables, or a

combination of both.

Theory often provides little guidance on model specification; in the majority of cases, model choice

- linearity in particular - is determined according to simplicity rather than adequacy. Under model

misspecification, estimators are generally inconsistent, and consequently, statistical tests which use

such estimators have incorrect size. To overcome this problem, many tests, including the one proposed
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in this paper, are conducted using nonparametric methods which impose less stringent conditions on

functional form.

Unfortunately, the relaxation of assumptions when using any nonparametric estimator comes at the

cost of slower convergence rates. This results in a reduction in power for tests based on such estimators.

To remedy this problem, ‘non-smoothing’ tests were developed which detect local alternatives at the
√
n-rate (see, for example, Bierens, 1982, 1990, and Stute, 1997). This is in contrast to ‘smoothing’

tests which typically attain slower than
√
n convergence (see, for example, Härdle and Mammen, 1993).

However, smoothing tests have been shown to have advantages over non-smoothing tests in detecting

high-frequency alternatives (Fan and Li, 2000; Su and White, 2008), and are asymptotically pivotal.

Nonetheless, the level accuracy of smoothing tests which use an approximation of the asymptotic

distribution can be quite poor (Härdle and Mammen, 1993) and their performance can depend heavily

on the bandwidth when using bootstrap critical values (Lavergne and Vuong, 2000)1. As such, we

follow a non-smoothing approach in this paper.

There is a plethora of research on nonparametric significance testing when data is uncontaminated

(see, for example, Robinson, 1989; Chen and Fan, 1999; Delgado and González-Manteiga, 2001).

While, as of yet, there appear to be no results on such tests in the presence of measurement error.

However, there has been work carried out on other testing problems in this setting. In particular, model

specification testing has received recent attention with Hall and Ma (2007b) proposing a non-smoothing

test and Otsu and Taylor (2019) providing results for a smoothing test. Although specification tests

share some similar characteristics with significance tests, these tests are fundamentally different in the

nature of the null hypothesis. The null model in the case of a specification test is typically parametric

(for example, a linear specification), whereas a significance test has a nonparametric null. Indeed,

in the majority of non-smoothing specification tests, there is no need for any type of smoothing. In

contrast, non-smoothing significance tests still require nonparametric estimation (despite the somewhat

misleading name).

There is also a growing literature on the related problem of variable selection in nonparametric

and semiparametric models with measurement error (see, for example, Ma and Li, 2010; Zhang, Ma

and Carroll, 2017). Although the problem of variable selection is similar to significance testing, the

two areas are quite distinct. Variable selection is concerned with finding the most parsimonious model

1González-Manteiga and Crujeiras (2013) provide a useful review of this vast literature.
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while retaining as much predictive ability as possible; this typically involves the use of information

criteria such as AIC or BIC. On the other hand, significance tests take no stance on the performance

of a given model, they aim only to test the plausibility of a null hypothesis.

The test proposed in this paper uses kernel deconvolution to deal with the measurement error

problem. Deconvolution has received considerable attention in recent decades and it is impractical

to mention more than just a fraction of the varied work in this literature. Within statistics and

econometrics, deconvolution has been used primarily for density estimation (Carroll and Hall, 1988;

Stefanski and Carroll, 1990) and estimation of a regression function (Fan and Truong, 1993; Butucea

and Taupin, 2008); with this, inference procedures have also been developed (Bissantz, Dümbgen,

Holzmann and Munk, 2007; Kato and Sasaki, 2018, 2019). In addition, it is increasingly popular to

construct deconvolution methods which do not require a priori knowledge of the measurement error

distribution (Delaigle, Hall and Meister, 2008; Hu and Ridder, 2012; Delaigle and Hall, 2016). See

Schennach (2016) for a recent review of this growing literature.

This paper is organised as follows. Section 2 outlines the hypothesis of interest and the test

statistics, as well as discussing possible alternatives to our test. Section 3 presents the asymptotic

properties of our test statistics under the null and the alternative hypothesis, respectively. Section

4 provides a consistent bootstrap procedure to compute critical values. Section 5 relaxes the known

error distribution assumption using repeated measurements. Section 6 considers the small sample

performance of our test through a Monte Carlo study. Finally, Section 7 concludes. We relegate

mathematical proofs of theorems to Appendix A.

2 Testing Framework

Let Y ∈ R be a response variable and (X∗, Z∗) ∈ R2 be a pair of regressors. We assume that (X∗, Z∗)

are unobservable due to measurement error, but that we can observe noisy measurements, X and Z,

generated by

X = X∗ + ε, E[ε] = 0, (2.1)

Z = Z∗ + ν, E[ν] = 0, (2.2)
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where (ε, ν) is a pair of classical measurement errors, i.e. ε and ν are independent of (X∗, Y, Z∗).

Although independence between (ε, ν) and (X∗, Y, Z∗) is assumed, this is not in fact necessary; we

only require f ft
X(t) = f ft(t)f ft

ε (t) and f ft
Z (t) = f ft

Z∗(t)f
ft
ν (t) for all t ∈ R, where fA denotes the density of

a random variable A, f denotes the density of X∗, and mft(t) ≡ 1
2π

∫
eitum(u)du denotes the Fourier

transform of a function m with i =
√
−1.

In this paper, we are interested in testing the significance of Z∗ when both X∗ and Z∗ are mis-

measured, i.e. we wish to test the hypothesis

H0 : E[Y |X∗, Z∗] = E[Y |X∗] a.s.,

based on an i.i.d. sample of (X,Y, Z). Notice that the null hypothesis is equivalent to the conditional

moment restriction

E
[
(Y − E[Y |X∗])|X∗, Z∗

]
= 0 a.s.. (2.3)

In the spirit of Bierens (1982, 1990), (2.3) can be written as an unconditional moment restriction of

the form

T (ξ) ≡ E
[
(Y − r(X∗))f(X∗)W(X∗, Z∗; ξ)

]
= 0 for all ξ ∈ Ξ,

where r(x) = E[Y |X∗ = x], f(x) > 0 a.s.,2 and W(x, z; ξ) is a ‘generically totally revealing’ function

(Stinchcombe and White, 1998) indexed by ξ ∈ Ξ for some compact set Ξ ⊆ R2 with non-empty

interior. Common choices for W(x, z; ξ) include ei(x,z)ξ and e(x,z)ξ used in Bierens (1982, 1990),

respectively, and I{(x, z) ≤ ξ} proposed by Stute (1997), where I{·} denotes the indicator function.

In this paper, we takeW(x, z; ξ) = ei(x,z)ξ as this simplifies many of the technical proofs. However, we

conjecture that very similar results can be obtained using any generically totally revealing function.

In the error-free case, both X∗ and Z∗ are observable, and T (ξ) can be estimated by

Ťn(ξ) =
1

n

n∑
j=1

(
Yj − ř

(
X∗j
))
f̌
(
X∗j
)
ei(X∗j ,Z

∗
j )ξ,

where ř(x) is a nonparametric kernel regression estimator of r(x) and f̌(x) is a kernel density estimator

2The multiplication by f(X∗) in the definition of T (ξ) is used only to remove the random denominator in E[Y |X∗]
and hence simplify the analysis.
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of f(x), as in Delgado and González-Manteiga (2001). In our case, Ťn(ξ) is infeasible as X∗j and Z∗j

are unobservable due to measurement error. However, T (ξ) can still be estimated by evaluating r(x),

f(x), and the joint density h(x, y, z) of (X∗, Y, Z∗) in the expression

T (ξ) =

∫∫∫
(y − r(x))f(x)h(x, y, z)ei(x,z)ξdxdydz, (2.4)

using deconvolution methods.

In particular, r(x), f(x), and h(x, y, z) can be estimated by

r̂(x) =

∑n
j=1 YjKε

(
x−Xj
bn

)
∑n

j=1 Kε

(
x−Xj
bn

) , f̂(x) =
1

nbn

n∑
j=1

Kε

(
x−Xj

bn

)
,

ĥ(x, y, z) =
1

nb3n

n∑
j=1

K

(
y − Yj
bn

)
Kε

(
x−Xj

bn

)
Kν

(
z − Zj
bn

)
,

where the deconvolution kernel associated with a random error η, denoted as Kη, is defined as

Kη(u) =
1

2π

∫
e−itu K ft(t)

f ft
η (t/bn)

dt,

with a standard kernel function K and a bandwidth bn.

Substituting these estimators into (2.4) leads to the following estimator for T (ξ)

Tn(ξ) =

∫∫∫
(y − r̂(x))f̂(x)ĥ(x, y, z)ei(x,z)ξdxdydz

=
1

n2b4n

n∑
j=1

n∑
k=1

∫∫  Kε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
ei(x,z)ξ

×
∫

(y − Yj)K
(
y−Yk
bn

)
dy

 dxdz

=
1

n2b3n

n∑
j=1

n∑
k=1

∫∫  Kε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
ei(x,z)ξ

×
∫

(Yk − Yj + bny)K (y) dy

 dxdz

=
1

n2b3n

n∑
j 6=k

(Yk − Yj)
∫∫

Kε

(
x−Xj

bn

)
Kε

(
x−Xk

bn

)
Kν

(
z − Zk
bn

)
ei(x,z)ξdxdz,

where the third equality follows by a change of variables and the last equality follows from
∫
K(u)du =

1 and
∫
uK(u)du = 0.

Note that smoothing along Y is not needed in the construction of Tn(ξ), even though it is used
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in the construction of ĥ. Also note that the same bandwidth is used within each kernel function;

however, this is only to keep the notation simple and is not necessary. In Section 6, we discuss a

bandwidth selection scheme that can be applied individually to each bandwidth and which we use in

the analysis of the finite sample performance of our test. Finally, fε and fν are assumed to be known

in the construction of Tn(ξ), which rarely holds in practice. In Section 5, we show how an additional

noisy measurement of (X∗, Z∗) can be used to relax this known error distribution assumption, and

prove the properties of the resulting test.

The test statistic is constructed as a continuous functional of Tn(ξ). In this paper, we consider

two popular examples of such functionals: the Cramér-von Mises-type and Kolmogorov-Smirnov-type

functionals. Corresponding test statistics are given by

CMn =

∫
Ξ
|Tn(ξ)|2dξ,

KSn = sup
ξ∈Ξ
|Tn(ξ)|.

Throughout this paper, to keep the notation simple, we focus on the case of only two regressors

which are both affected by measurement error. The proposed test, however, can easily be adapted

to the general multivariate case with a combination of error-free and contaminated regressors. For

example, when X∗ = (X∗1 , . . . , X
∗
dx

) is correctly measured and Z∗ = (Z∗1 , . . . , Z
∗
dz

) is unobservable due

to measurement, let Z = (Z1, . . . , Zdz) be a noisy measurement of Z∗ generated by Zd = Z∗d + νd for

d = 1, . . . , dz. Following a similar route to the bivariate fully contaminated case, the test statistic can

be constructed as CM ′n =
∫

Ξ |T
′
n(ξ)|2dξ or KS′n = supξ∈Ξ |T ′n(ξ)|, where

T ′n(ξ) =
1

n2b3n

∑
j 6=k

(Yk − Yj)
∫∫ 

∏dx
d=1K

(
xd−X∗d,j

bn

)∏dx
d=1K

(
xd−X∗d,k

bn

)
×
∏dz
d=1 Kνd

(
zd−Zd,k

bn

)
ei(x′,z′)ξ

 dxdz,

with x = (x1, . . . , xdx)′, z = (z1, . . . , zdz)
′, and ξ = (ξ1, . . . , ξdx+dz)

′. We conjecture that analogous

results to our main theorems can be established for such cases.

It is important to emphasise that conducting a conventional nonparametric significance test using

the mismeasured regressors would, in general, lead to misleading results. To see this, note that by
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ignoring the measurement error, a conventional test would work with a null hypothesis of the form

H′0 : E [Y |X,Z] = E [Y |X] a.s..

However, H′0 fails under H0 unless
∫
E[Y |X∗ = x][fX∗|X,Z(x) − fX∗|X(x)]dx = 0, which would fail

if fX∗|X,Z 6= fX∗|X . Hence, a conventional test which ignores measurement error has, in general,

incorrect size.

There are, however, special cases where the measurement error can indeed be ignored and a con-

ventional test using the contaminated sample can be conducted. One such example is when Z∗ is

independent of X∗. In such a situation, fX∗|X,Z = fX∗|X given (ε, ν) are classical, and H′0 holds if and

only if H0 is true. A conventional test can then be conducted without accounting for the measurement

error issue.

A second example occurs when we wish to test the joint significance of all regressors. In such

a situation, we test E[Y |Z∗] = E[Y ], which is equivalent to testing E[Y |Z] = E[Y ]. Hence, the

test constructed in this paper is applicable when there is interest in testing the significance of a non-

trivial subset of regressors, which are not independent of other regressors, and when the regressors are

contaminated with classical measurement error.

A potential alternative to our test could be constructed by linearising the model by taking, for

example, a finite polynomial in the regressors, estimating the regression coefficients using an IV ap-

proach, and conducting a Wald test. Note that an instrument is required in this case: typically a

repeated measurement of the mismeasured regressor. Furthermore, for each transformation of each

variable, the instrument is the analogous transformation of the repeated measurement. Of course,

this is a simplification of the model and, although being valid, would not lead to a consistent test

if the model is misspecified. However, for practical purposes, we may hope that this approach fares

well. Unfortunately, as our simulation results in Section 6 indicate, this is not the case, in general.

The reason is twofold. Nonlinear transformations of mismeasured regressors generally exacerbate the

measurement error problem. Additionally, the strength of an instrument typically deteriorates with

nonlinear transformations.

Finally, it is also worth noting that while our test is able to accommodate discrete regressors if

they are correctly measured, discrete mismeasured variables cannot be accounted for as they would

violate the classical measurement error assumption.
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3 Asymptotic Theory

In this section, the asymptotic distributions of the test statistics CMn and KSn are established under

the null hypothesis H0 and under a sequence of local alternatives H1n that converge to H0 at the

parametric rate n−1/2, respectively. Let g(x) = r(x)f(x) and gX∗,Z∗(x, z) = E[Y |X∗ = x, Z∗ =

z]fX∗,Z∗(x, z). Also, for a function m : Rd → R, denote m(δ1,...,δd)(u) = ∂δ1+···+δdm(u)

∂u
δ1
1 ···∂u

δd
d

, where d is any

positive integer, u = (u1, . . . , ud) is a d-dimensional vector, and (δ1, . . . , δd) is a d-dimensional vector

of nonnegative integers.

3.1 Asymptotic null distribution

To derive the asymptotic null distributions of the test statistics CMn and KSn, we first impose the

following regularity conditions.

Assumption D.

(i) {Xj , Yj , Zj}nj=1 is an i.i.d. sample of (X,Y, Z) satisfying (2.1) and (2.2) with E|Y |2 <∞.

(ii) (ε, ν) are mutually independent and are independent of (X∗, Y, Z∗) with characteristic functions

f ft
ε (t) 6= 0 and f ft

ν (t) 6= 0 for all t ∈ R. Also, infξ∈Ξ |f ft
ν (ξ2)| > c for a positive constant c.

(iii) bn → 0 as n→∞.

Assumption D (i) requires random sampling and the existence of the second moment of Y . As-

sumption D (ii) is standard in the classical measurement error literature. The assumption f ft
ε (t) 6= 0

and f ft
ν (t) 6= 0 for all t ∈ R is needed for kernel based deconvolution methods and is satisfied by many

conventional distributions; however, a notable exception is the uniform distribution, whose charac-

teristic function is oscillatory and has infinitely many zeros. If this assumption is unlikely to hold,

a possible solution involves using a ridge parameter approach (see, for example, Hall and Meister,

2007, and Meister, 2009). Given f ft
ν is nonvanishing anywhere and Ξ is compact, the assumption

infξ∈Ξ |f ft
ν (ξ2)| > c is innocuous, and it is imposed here for regularity purposes. Assumption D (iii)

simply states that the bandwidth must decay to zero as the sample size grows.

As is typical in the nonparametric measurement error literature, we consider two separate cases

characterised by bounds on the decay rate of the tail of the characteristic function of the measurement

errors. For the ordinary smooth case, where the error characteristic function decays at a polynomial

rate, the following assumptions are imposed.
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Assumption O.

(i) f , g, fX∗,Z∗, and gX∗,Z∗ are p-times continuously differentiable with bounded and integrable deriva-

tives, where p is a positive integer satisfying p > 1 + 2α, and satisfy E[Y 2|f (l)(X)|2] < ∞,

E|g(l)(X)|2 <∞, E[Y 2|f (l,0)
X∗,Z∗(X)|2] <∞, and E|g(l,0)

X∗,Z∗(X)|2 <∞ for 0 ≤ l ≤ p, and

∣∣∣f (p)(x+ c)− f (p)(x)
∣∣∣ < m1,p(x)|c|,∣∣∣g(p)(x+ c)− g(p)(x)
∣∣∣ < m2,p(x)|c|,

max
0≤l≤p

∣∣∣f (l,p−l)
X∗,Z∗ (x+ cx, z + cz)− f (l,p−l)

X∗,Z∗ (x, z)
∣∣∣ < m3,p(x, z)

√
c2
x + c2

z,

max
0≤l≤p

∣∣∣g(l,p−l)
X∗,Z∗ (x+ cx, z + cz)− g(l,p−l)

X∗,Z∗ (x, z)
∣∣∣ < m4,p(x, z)

√
c2
x + c2

z,

for some bounded and integrable functions m1,p(x), m2,p(x), m3,p(x, z), and m4,p(x, z).

(ii) The characteristic function of ε is of the form

f ft
ε (t) =

1

cos
0 + cos

1 t+ · · ·+ cos
α t

α
,

for all t ∈ R and for some finite constants cos
0 , . . . , c

os
α with cos

0 6= 0, and α > 0.

(iii) K is differentiable to order p and satisfies

∫
K(u)du = 1,

∫
up+1K(u)du 6= 0,

∫
ulK(u)du = 0, for l = 1, 2, . . . , p.

Also, K ft is compactly supported on [−1, 1], symmetric around zero, and bounded.

(iv) nb2pn → 0 and nb2+4α
n →∞ as n→∞.

(v) For cos
l (ξ1) = (−i)l

∑α
h=l c

os
h

(
l
h

)
ξh−l1 , we have

E

 supξ∈Ξ

∣∣∣∑α
l=0 c

os
l (ξ1)

∫
{g(l,0)
X∗,Z∗ − Y f

(l,0)
X∗,Z∗}(X, z)ei(X,z)ξdz

∣∣∣2
+ supξ∈Ξ

∣∣∑α
l=0 c

os
l (ξ1){g(l) − Y f (l)}(X)

∣∣2
 <∞.

Assumption O (i) imposes further conditions on the existence of moments, and gives smoothness

restrictions on the structural functions, which are equivalent to Assumption 3 and Assumption 5 in

Powell, Stock and Stoker (1989).
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Assumption O (ii) is an ordinary smooth condition. Specifically, it requires that f ft
ε (t) decays to

zero at a polynomial rate as |t| → ∞. Examples of densities that are ordinary smooth include the

Laplace and gamma distributions. Compared to the conventional ordinary smooth assumption, which

only imposes bounds on the tail behaviour of the error characteristic function, Assumption O (ii) is

stronger in the sense that it characterises the exact limiting behaviour of f ft
ε (t) as |t| → ∞, which is

necessary to characterise the asymptotic distribution of our test statistic. It is also worth noting that

Assumption O (ii) only concerns fε, while fν is left unrestricted except for the nonvanishing nature of

f ft
ν anywhere and infξ∈Ξ |f ft

ν (ξ2)| > c as required by Assumption D. This is because our test statistic

is constructed asymmetrically with respect to X and Z. In particular, as Z only appears under the

alternative, due to the presence of the generically totally revealing function ei(x,z)ξ and integration

with respect to z, to characterise the asymptotic distributions of the test statistics, we only need

to characterise the behaviour of f ft
ν over a compact set. In contrast, X appears in both the null

and alternative model. Thus, even after considering the presence of the generically totally revealing

function ei(x,z)ξ and integration with respect to x, the exact limiting behaviour of f ft
ε (t) as |t| → ∞

is still needed to characterise the asymptotic distribution of the test statistic. An implication of this

insight is that if only regressors which are being tested are contaminated with error, our test would

be adaptive in the sense that the asymptotic distribution of our test statistic can be characterised in

a uniform way irrespective of the smoothness of the error distribution.

Assumption O (iii) requires a higher-order kernel to remove the asymptotic bias of the nonpara-

metric estimators and is used in the proof of Lemma 3. Besides removing the estimation bias, the

higher-order kernel is also used to characterise the integration involving the deconvolution kernel in

Lemma 5. Higher-order kernels are common in deconvolution problems; indeed, Meister (2009) dis-

cusses how kernels of any order can be constructed quite simply.

The first condition of Assumption O (iv) is required to ensure that the bias from the nonparametric

estimators is asymptotically negligible and the second condition is needed for the error of the Hájek

projection to be asymptotically negligible. Note that Assumption O (iv) implicitly requires p >

1 + 2α, i.e. the structural functions have to be smooth enough to use the Hájek projection while

undersmoothing, which is guaranteed by Assumption O (i).

Finally, Assumption O (v) is a high-level assumption on the boundedness of the asymptotic variance

of Tn(ξ); an analogous assumption is made in Fan (1995).
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To derive the asymptotic distributions of CMn and KSn under the null hypothesis H0 for the

ordinary smooth case, we need to characterise the limiting behaviour of the empirical process Tn(ξ).

Theorem 1. Suppose Assumptions D and O hold. Then, under H0, we have

√
nTn(ξ)⇒ Gos(ξ),

where Gos(ξ) is a Gaussian process with mean zero and covariance structure V ar[ros
∞(X,Y, Z; ξ)] for

ros
∞(X,Y, Z; ξ) =

α∑
l=0

cos
l (ξ1)

[
{Y f (l) − g(l)}(X)ei(X,Z)ξf ft−1

ν (ξ2) +

∫
{g(l,0)
X∗,Z∗ − Y f

(l,0)
X∗,Z∗}(X, z)e

i(X,z)ξdz

]
.

Based on Theorem 1, using the continuous mapping theorem (see, for example, van der Vaart and

Wellner, 1996, Theorem 1.3.6), the asymptotic null distributions of CMn and KSn for the ordinary

smooth case are established as follow.

Corollary 1. Suppose Assumptions D and O hold. Then, under H0, we have

nCMn
d→
∫

Ξ
|Gos(ξ)|2 dξ,

√
nKSn

d→ sup
ξ∈Ξ
|Gos(ξ)| .

Corollary 1 shows that in the ordinary smooth case, the Cramér-von Mises statistic and Kolmogorov-

Smirnov statistic converge to the squared L2-norm and the Skorohod norm of a Gaussian process,

respectively, which are characterised by the limit of the empirical process Tn(ξ). For the Cramér-von

Mises statistic CMn, following Bierens and Ploberger (1997), the limiting distribution can be further

characterised as an infinite weighted sum of independent chi-squared random variables.

It is worth noting that unlike typical results based on deconvolution estimation, Tn(ξ) achieves a
√
n-rate. This is, however, not the first time that a parametric rate has been obtained for functionals

of nonparametric estimators in a measurement error context. Zhu and Cui (2003) and Hall and Ma

(2007a) develop semiparametric estimators for regression functions which also achieve a
√
n-rate of

convergence.

For the second case, known as supersmooth measurement error, where the error characteristic

function decays in an exponential rate, the following assumptions are imposed.
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Assumption S.

(i) f , g , fX∗,Z∗, and gX∗,Z∗ are infinitely differentiable.

(ii) The characteristic function of ε is of the form

f ft
ε (t) = csse−µ|t|

γ
,

for all t ∈ R and for some positive constant css, µ, and positive even integer γ.

(iii) K is infinitely differentiable and satisfies

∫
K(u)du = 1,

∫
ulK(u)du = 0, for all l ∈ N.

Also, K ft is compactly supported on [−1, 1], symmetric around zero, and bounded.

(iv) nb2ne
−µ2γ+2b−γn →∞ as n→∞.

(v) For css
l (ξ1) = (−i)l

∑∞
h=dl/γe

µh

cssh!

(
l
hγ

)
ξhγ−l1 , we have

E

 supξ∈Ξ

∣∣∣∑∞l=0 c
ss
l (ξ1)

∫
{g(l,0)
X∗,Z∗ − Y f

(l,0)
X∗,Z∗}(X, z)ei(X,z)ξdz

∣∣∣2
+ supξ∈Ξ

∣∣∑∞
l=0 c

ss
l (ξ1){g(l) − Y f (l)}(X)

∣∣2
 <∞.

Assumption S (i) is restrictive but appears necessary when dealing with supersmooth measurement

error. However, the conditions on the density functions simply require the distributions of the latent

regressors to be supersmooth themselves. Indeed, Meister (2009) discusses how the class of infinitely

differentiable functions still contain a ’comprehensive nonparametric class of densities’ (pp. 44). For

the conditional mean functions, there are still a broad class of functions which satisfy such a smoothness

restriction, including - but not limited to - all polynomials, circular functions, exponentials, and

products or sums of such functions.

Assumption S (ii) is a supersmooth condition requiring f ft
ε (t) to decay to zero at an exponential

rate as |t| → ∞. The most common example of a density satisfying this assumption is the Gaussian

density where γ = 2. The constraint on γ being even also seems necessary in this setup; specifically,

it is required in the proof of Lemma 4 (the supersmooth case). Note that this restriction rules out the

Cauchy distribution; Van Es and Uh (2005) and Kato and Sasaki (2018) find similar issues with the
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Cauchy distribution in a supersmooth error setting and also make this assumption. Similarly to the

ordinary smooth case, Assumption S (ii) is stronger than the conventional supersmooth assumption

in the sense that it not only imposes bounds on the tail behaviour of the error characteristic function,

but also characterises the exact limiting behaviour of f ft
ε (t) as |t| → ∞. Also, similarly to the ordinary

smooth case, due to the asymmetry of our test statistics with respect to X and Z, the smoothness

restriction only concerns fε.

Assumption S (iii) requires K to be an infinite-order kernel so that it can adapt to the smoothness

of f , g, fX∗,Z∗ , and gX∗,Z∗ , as used in the proof of Lemma 6. A common choice of K satisfying this

restriction is the flat-top kernel (McMurry and Politis, 2004).

As a result of the infinite-order kernel removing the bias in the nonparametric estimator, in contrast

to Assumption O (iv) for the ordinary smooth case, Assumption S (iv) does not impose an upper bound

on the bandwidth, which is usually required to control the magnitude of the estimation bias. Similar

to Assumption O (iv) for the ordinary smooth case, a lower bound on the bandwidth is imposed in

Assumption S (iv). In particular, Assumption S (iv) is satisfied by a bandwidth of order ln(n)−1/γ .

Finally, Assumption S (v) is a high-level assumption on the boundedness of the asymptotic variance

of Tn(ξ), which is analogous to Assumption O (v) for the ordinary smooth case.

The limiting behaviour of the empirical process Tn(ξ) under the null hypothesis H0 for the super-

smooth case is given in the following theorem.

Theorem 2. Suppose Assumptions D and S hold. Then, under H0, we have

√
nTn(ξ)⇒ Gss(ξ),

where Gss(ξ) is a Gaussian process with mean zero and covariance structure V ar[rss
∞(X,Y, Z; ξ)] for

rss
∞(X,Y, Z; ξ) =

∞∑
l=0

css
l (ξ1)

[
{Y f (l) − g(l)}(X)ei(X,Z)ξf ft−1

ν (ξ2) +

∫
{g(l,0)
X∗,Z∗ − Y f

(l,0)
X∗,Z∗}(X, z)e

i(X,z)ξdz

]
.

Based on Theorem 2, using the continuous mapping theorem, the asymptotic null distributions of

CMn and KSn for the supersmooth case are established as follow.
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Corollary 2. Suppose Assumptions D and S hold. Then, under H0, we have

nCMn
d→
∫

Ξ
|Gss(ξ)|2 dξ,

√
nKSn

d→ sup
ξ∈Ξ
|Gss(ξ)| .

Corollary 2 includes parallel results for the supersmooth case to the results in Corollary 1. Fan

(1995) derived an average derivative estimator using deconvolution kernel techniques and went on to

prove the
√
n-convergence of the estimator. Our derivation of the limits of the empirical process Tn(ξ)

in both Theorem 1 and 2 follows a similar route as in Fan (1995) due to the link between average

derivative estimators and non-smoothing tests. However, Fan (1995) was restricted to the ordinary

smooth case. The key to our result for the supersmooth case lies in Lemma 4, where we show that

supersmooth error can be thought of as an ordinary smooth problem with an infinite smoothness

parameter.

3.2 Asymptotic power

In this section, we analyse the power properties of the test against a sequence of local alternatives H1n

that converges to H0 at the parametric rate n−1/2. In particular, we assume a local linear alternative

of the form

H1n : E[Y |X∗, Z∗] = E[Y |X∗] +
∆(X∗, Z∗)√

n
a.s.,

where ∆ : R2 → R is a bounded non-zero function. The local power properties of CMn and KSn

under H1n can be derived based on the following results.

Theorem 3. Under H1n, if Assumptions D and O hold, we have

√
nTn(ξ)⇒ Gos(ξ) + µ∆(ξ),

and if Assumptions D and S hold, we have

√
nTn(ξ)⇒ Gss(ξ) + µ∆(ξ),

where Gos(ξ) and Gss(ξ) are the same Gaussian processes as defined in Theorem 1 and 2, respectively,
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and µ∆(ξ) is a deterministic shift function given by µ∆(ξ) = E[∆(X∗, Z∗)f(X∗)ei(X∗,Z∗)ξ].

Theorem 3 shows that under both ordinary smooth and supersmooth measurement error, the

asymptotic behaviour of Tn(ξ) under H1n can be characterised by the same Gaussian process used to

characterise the asymptotic behaviour of Tn(ξ) under H0 plus a deterministic shift function µ∆(ξ),

which essentially characterises the extra bias brought by H1n. Using the continuous mapping theorem,

tests based on a continuous functional of Tn(ξ) will have non-trivial power against local alternatives

drifting at the rate n−1/2.

4 Computation of Critical Values

The asymptotic distributions derived in Theorems 1 and 2 can be used to obtain critical values.

However, as explained in Bierens and Ploberger (1997), the limiting distributions depend on the

covariance function which in turn depends on the underlying distribution of the data. As such,

the asymptotic distributions are case dependent and challenging to estimate in practice. Given this

difficulty, we implement a bootstrap procedure.

Measurement error models provide a challenge for bootstrap procedures because neither the true

regressor nor the measurement error is observable. Any residual-based bootstrap approach is infeasible

in a measurement error context since the true regressors are needed to construct the residuals. It is

possible to follow an approach similar to Hall and Ma (2007b): estimating the density of the true

regressor and measurement error using deconvolution techniques, applying a wild bootstrap approach

for the regression error, and sampling from these respective densities. However, the estimated densities

suffer from the slow rates of convergence associated with deconvolution estimation, and the approach

is computationally expensive. In addition, the choice of several tuning parameters is needed. Instead,

we consider a simple empirical bootstrap approach.

We focus on the bootstrap for the KSn test statistic but conjecture that very similar results

can be obtained for the CMn statistic. A bootstrap sample {X#
j , Y

#
j , Z

#
j }nj=1 is constructed by

independently drawing with replacement from the set of observed {Xj , Yj , Zj}nj=1 and the bootstrap

statistic is calculated as
√
nKS#

n = supξ∈Ξ

∣∣∣√n{T#
n (ξ)− E

[
T#
n (ξ)

]}∣∣∣, where
T#
n (ξ) =

1

n2b3n

n∑
j 6=k

(Y #
k − Y

#
j )

∫∫
Kε

(
x−X#

j

bn

)
Kε

(
x−X#

k

bn

)
Kν

(
z − Z#

k

bn

)
ei(x,z)ξdxdz.
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To analyse the properties of this procedure, we strengthen Assumptions O (v) and S (v) as follows.

Assumption B.

E[
∫

Ξ r
os
∞(X,Y, Z; ξ)4dξ] < ∞ holds under Assumption O or E[

∫
Ξ r

ss
∞(X,Y, Z; ξ)4dξ] < ∞ holds

under Assumption S.

Assumptions B places bounds on the fourth moment of the dominant term from the Hájek pro-

jection of our empirical process. This assumption is needed to apply Chernozhukov, Chetverikov and

Kato (2016, Theorems 2.1 and 2.3).

Define ĉα as the (1 − α)th quantile of KS#
n . The validity of the proposed empirical bootstrap

procedure is then given in the following theorem.

Theorem 4. Suppose Assumptions D, O/S, and B hold, then under H0,

P{KSn ≤ ĉα} ≥ 1− α− o(1).

Theorem 4 provides the asymptotic validity of the empirical bootstrap for our Kolmogorov-Smirnov

statistic and shows that quantiles of the bootstrap statistic distribution conditional on the data can

be used as critical values for our test. Similar results for the empirical bootstrap in a measurement

error setting were found by Kato and Sasaki (2018, 2019) in the construction of confidence bands for

density estimation and nonparametric regression, respectively, and by Adusumilli, Kurisu, Otsu and

Whang (2019) for confidence bands for the cumulative distribution function.

5 Case of Unknown Measurement Error Distribution

In this section, we discuss how to relax the known error distribution assumption. Suppose that, in

addition to X and Z, we also observe Xr and Zr, which are generated by

Xr = X∗ + εr, (5.1)

Zr = Z∗ + νr, (5.2)

where (εr, νr) are independent and identically distributed as (ε, ν). Furthermore, we assume the

following.
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Assumption R.

(i) {Xr
j , Z

r
j }nj=1 is an i.i.d. sample of (Xr, Zr) satisfying (5.1) and (5.2).

(ii) (εr, νr) are independent and identically distributed as (ε, ν), and f ft
ε and f ft

ν are real-valued.

Assumption R (ii) requires that (εr, νr) is an independent copy of (ε, ν), and fε and fν are symmetric

around zero, which is conventional in the deconvolution literature when the error density is unknown

(see, for example, Delaigle, Hall and Meister, 2008).

Under Assumption R, f ft
ε and f ft

ν can be estimated by (Delaigle, Hall and Meister, 2008)

f̂ ft
ε (t) =

∣∣∣ 1
n

n∑
j=1

cos{t(Xj −Xr
j )}
∣∣∣1/2, f̂ ft

ν (t) =
∣∣∣ 1
n

n∑
j=1

cos{t(Zj − Zrj )}
∣∣∣1/2.

Let K̂ε and K̂ν separately denote the deconvolution kernels based on the estimated error charac-

teristic functions f̂ ft
ε and f̂ ft

ν , and are defined as

K̂ε(u) =
1

2π

∫
e−itu K ft(t)

f̂ ft
ε (t/bn)

dt, K̂ν(u) =
1

2π

∫
e−itu K ft(t)

f̂ ft
ν (t/bn)

dt.

By replacing Kε and Kν by K̂ε and K̂ν respectively, in the case when the error distribution is unknown,

T (ξ) can be estimated by

T̂n(ξ) =
1

n2b3n

n∑
j 6=k

(Yk − Yj)
∫∫

K̂ε

(
x−Xj

bn

)
K̂ε

(
x−Xk

bn

)
K̂ν

(
z − Zk
bn

)
ei(x,z)ξdxdz,

and the test statistics are constructed as

ĈMn =

∫
Ξ
|T̂n(ξ)|2dξ,

K̂Sn = sup
ξ∈Ξ
|T̂n(ξ)|.

It should be noted that alternative estimation schemes for f ft
ε and f ft

ν exist which rely on weaker

assumptions than have been made here. In particular, Li and Vuong (1998) use a lemma by Kot-

larski (1967) to construct an estimator of an error characteristic function which relaxes the symmetry

assumption by still requires independent repeated measurements. While Delaigle and Hall (2016) de-

velop a clever method which does not require repeated measurements, their work requires symmetry
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in the measurement error and asymmetry in the true regressor. A testing procedure based on such

estimators can be constructed in an analogous fashion as outlined above; however, the analysis of the

properties of such tests is beyond the scope of this paper.

To derive the asymptotic distributions of ĈMn and K̂Sn, as seen in Theorem 1-3, it is suffice to

characterise the asymptotic behaviour of T̂n(ξ). Let

r̂ε,ν∞ (X,Xr, Y, Z, Zr; ξ) =

1

4π

∫

{

1− cos(t(X−Xr))
|f ftε (t)|2

} f ft(t)gft
X∗,Z∗(ξ1 − t, ξ2)− gft(t)f ft

X∗,Z∗(ξ1 − t, ξ2)

+f ft(ξ1 − t)gft
X∗,Z∗(t, ξ2)− gft(ξ1 − t)f ft

X∗,Z∗(t, ξ2)


+
{

1− cos(t(Z−Zr))
|f ftν (ξ2)|2

}{
f ft(t)gft

X∗,Z∗(ξ1 − t, ξ2)− gft(t)f ft
X∗,Z∗(ξ1 − t, ξ2)

}

dt.

In the ordinary smooth case, to characterise the asymptotic behaviour of T̂n(ξ), we further impose

the following assumptions in addition to Assumption O.

Assumption O’.

(i) nb2+12α
n log(b−1

n )−2 →∞ as n→∞.

(ii) E[
∫

Ξ r̂
os
∞(X,Xr, Y, Z, Zr; ξ)2dξ] <∞, where

r̂os
∞(X,Xr, Y, Z, Zr; ξ) = ros

∞(X,Y, Z; ξ) + r̂ε,ν∞ (X,Xr, Y, Z, Zr; ξ).

Assumption O’ (i) is a stronger bandwidth condition than Assumption O (iv), and is required to

ensure that the higher order terms in the error brought by the estimation of the error characteristic

functions is asymptotically negligible. Assumption O’ (ii) is a high-level assumption on the bounded-

ness of the asymptotic variance of T̂n(ξ), as Assumption O (v) for Tn(ξ). In particular, the first term

ros
∞(X,Y, Z; ξ) characterises the estimation error when the error distribution is known, and the addi-

tional term r̂ε,ν∞ (X,Xr, Y, Z, Zr; ξ) characterises the main terms in the error brought by the estimation

of the error characteristic functions. The following theorem summaries asymptotic behaviour of T̂n(ξ)

for the ordinary smooth case under the null hypothesis H0 and under the alternative hypothesis H1n.

Theorem 5. Suppose Assumptions D, O, R, and O’ hold.

(i) Under H0, we have
√
nT̂n(ξ)⇒ Ĝos(ξ),
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where Ĝos(ξ) denotes a Gaussian process with mean zero and covariance structure V ar[r̂os
∞(X,Xr, Y, Z, Zr; ξ)].

(ii) Under H1,n, we have
√
nT̂n(ξ)⇒ Ĝos(ξ) + µ∆(ξ),

where µ∆(ξ) is the same deterministic shift function as defined in Theorem 3.

Theorem 5 shows that in ordinary smooth case when the error distribution is unknown, T̂n(ξ)

converges at a
√
n-rate to a Gaussian process Ĝos(ξ), which, by the continuous mapping theorem,

implies that the Cramér-von Mises statistic and Kolmogrov-Smirnov statistic converge to the squared

L2-norm and sup-norm of the Gaussian process Ĝos(ξ), respectively. The Gaussian process Ĝos(ξ) here,

however, is different from Gos(ξ), the limit of the empirical process Tn(ξ) in the case when the error

distribution is known, as the estimation error of the error characteristic functions is non-negligible.

Whereas the bias term does not depend on the error distributions, so the deterministic shift function

µ∆(ξ) is the same as that obtained in the case when the error distribution is known.

For the supersmooth case, the following assumptions are needed in addition to Assumption S to

characterise the asymptotic behaviour of T̂n(ξ).

Assumption S’.

(i) nb2ne
−12µε2γb

−γ
n log(b−1

n )−2 →∞ as n→∞.

(ii) E[
∫

Ξ r̂
os
∞(X,Xr, Y, Z, Zr; ξ)2dξ] <∞, where

r̂ss
∞(X,Xr, Y, Z, Zr; ξ) = rss

∞(X,Y, Z; ξ) + r̂ε,ν∞ (X,Xr, Y, Z, Zr; ξ).

Similar to the ordinary smooth case, Assumption S’ (i) requires a stronger bandwidth condition

than Assumption S (iv) to ensure that the higher order terms in the error brought by the estimation

of the error characteristic functions is asymptotically negligible, and Assumption S’ (ii) requires the

boundedness of the asymptotic variance of T̂n(ξ). The asymptotic behaviour of T̂n(ξ) for the super-

smooth case under the null hypothesis H0 and under the alternative hypothesis H1n are summarised

in the following theorem.

Theorem 6. Suppose Assumptions D, S, R, and S’ hold.

(i) Under H0, we have
√
nT̂n(ξ)⇒ Ĝss(ξ),
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where Ĝos(ξ) denotes a Gaussian process with mean zero and covariance structure V ar[r̂ss
∞(X,Xr, Y, Z, Zr; ξ)].

(ii) Under H1,n, we have
√
nT̂n(ξ)⇒ Ĝss(ξ) + µ∆(ξ),

where µ∆(ξ) is the same deterministic shift function as defined in Theorem 3.

Theorem 6 includes parallel results for the supermsooth case to the results in Theorem 5 for the

ordinary smooth case. Dong, Otsu, and Taylor (2019) showed that if the error density is symmetric

around zero, the asymptotic distribution of the average derivative estimator is the same irrespective

of whether the error density is estimated or not. Thus, given the link between average derivative

estimators and non-smoothing tests, the conclusions of Theorems 5 and 6 seem somewhat surprising.

The reason for the discrepancy between the two results resides in the asymmetric nature of T (ξ)

which is not present in the average derivative. In particular, the asymmetry is two-fold. First, T (ξ)

is based on ffX∗,Z∗ , while the average derivative is based on ff ′. Second, T (ξ) involves a revealing

function ei(x,z)ξ for an arbitrary ξ ∈ Ξ, while the average derivative restricts ξ = (0, 0). Due to the

asymmetry of T (ξ), even when the error density is symmetric around zero, the estimation error of the

error characteristic functions is still non-negligible in our test.

Given the non-negligibility of the estimation error of the error characteristic functions, the empirical

bootstrap proposed in Section 4 will be inconsistent; this is in contrast to the results of Kato and

Sasaki (2018, 2019) and Adusumilli, Kurisu, Otsu and Whang (2019). Since the measurement errors

are unobservable, it is not possible to account for their effect using an empirical bootstrap. However,

because the estimator for the error characteristic function is constructed using a sample mean, it is

possible to construct a multiplier bootstrap version of each estimator, i.e.

f̂ ft#
ε (t) =

∣∣∣ 1
n

n∑
j=1

η1,j cos{t(Xj −Xr
j )}
∣∣∣1/2, f̂ ft#

ν (t) =
∣∣∣ 1
n

n∑
j=1

η2,j cos{t(Zj − Zrj )}
∣∣∣1/2,

where η1 and η2 are i.i.d random variables with unit mean and unit variance. These bootstrap estimates

can be plugged into T#
n (ξ) to give a bootstrap statistic for T̂n(ξ), denoted as T̂#

n (ξ). However, it is

beyond the scope of this paper to prove the consistency of this bootstrap procedure.
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6 Simulation

Since this is the first nonparametric significance test able to account for measurement error, it is

difficult to give a direct comparison to any existing tests. However, we report results for the test

of Delgado and González-Manteiga (2001) (DM henceforth) as well as a Wald test based on an IV

regression with functional form: β0 + β1X1 + β2X
2
1 + β3X2 + β4X

2
2 ; a repeated measurement, as well

as its square, are used as the instruments.

The true, unobservable regressors (X∗, Z∗) are each distributed as N(0, 1) with a correlation of

0.4. The contaminated regressors are given by X = X∗ + ε and Z = Z∗ + ν. In order to fairly

compare our test with the available alternatives, we do not assume we know f ft
ε or f ft

ν .3 Instead, we

assume a repeated measurement of each contaminated regressor is available, given by Xr = X∗ + εr

and Zr = Z∗ + νr, where εr is distributed independently and identically to ε (as are νr and ν). For

the ordinary smooth case, both ε and ν are drawn independently from the Laplace distribution with

a standard deviation of 1/3, giving a signal to noise ratio of three. For the supersmooth case, we use

a zero mean Gaussian error with standard deviation also equal to 1/3. Since both distributions are

symmetric around zero, we can use the repeated data to estimate the error characteristic functions as

outlined in Section 5.

The infinite-order flat-top kernel of McMurry and Politis (2004) is used throughout all simulations.

This kernel is defined by its Fourier transform

K ft(t) =


1 if |t| ≤ 0.05,

exp
{
− exp(−(|t|−0.05)2)

(|t|−1)2

}
if 0.05 < |t| < 1,

0 if |t| ≥ 1,

and satisfies Assumptions O (iii) and S (iii). Results are reported for two sample sizes n = {250, 500}.

Unfortunately, there are currently no theoretical results on the optimal choice of bandwidth for

testing in the presence of measurement error. It is beyond the scope of this paper to investigate such

issues. However, we suggest using the procedure put forth by Bissantz et al. (2007) to select the optimal

bandwidths for each individual deconvolution kernel estimator, i.e. for r̃, f̃ , and h̃. The bandwidth

selection procedure involves two steps. First, a pilot bandwidth is selected that is oversmoothing,

denoted b0n. It is crucial that the initial bandwidth is larger than the optimal choice; however, beyond

3The results are slightly better when f ft
ε and f ft

ν are assumed known; however, the difference is small.
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this, the procedure is relatively insensitive to this initial selection. The plug-in bandwidth of Delaigle

and Gijbels (2004) is used in these simulations, but, as suggested in Bissantz et al. (2007), this choice

is multiplied by two to ensure it is oversmoothing. Second, a set of potential bandwidths is created,

bn,j = b0n(j/J) for j = 1, . . . , J . Denote by f̃j the estimator f̃ which uses the j-th bandwidth in this

set (an analogous procedure is used for r̃ and h̃). The selected bandwidth is the largest bandwidth

bn,j such that d(∞)
j−1,j ≡ ||f̃j−1 − f̃j ||∞ is larger than ρd

(∞)
J−1,J for some ρ > 1. To select J and ρ, we

follow the suggestion of Kato and Sasaki (2018) and choose J = 4 log(n) and ρ = 0.4 log(n).

For the test of DM, a rule-of-thumb bandwidth, bdm = n−1/3, is used; this is taken from the

simulations carried out in DM. Results are also reported for half of this value and double this value.

The critical values for our test are constructed using the bootstrap procedure outlined at the end

of Section 5 with 499 replications. For DM, the bootstrap procedure denoted C∗∗n in their paper is

used. The perturbation random variable for their bootstrap is the Mammen two-point distribution.

All results are based on 1000 Monte Carlo replications.

Table 1 shows results for the level accuracy of the three tests. The columns labelled ‘CM’ and

‘KS’ report the proportion of rejections for the Cramér-von Mises test and the Kolmogorov-Smirnov

test proposed in this paper, respectively. The column labelled ‘DM’ refers to the test of Delgado

and González-Manteiga (2001), and ‘IV’ displays results for the Wald test based on the IV quadratic

regression. Tables 2, 3, and 4 display the power results for three different alternatives. Note that the

power results are empirically adjusted to give a fair comparison of the three methods.4

Table 1: Y = 1 +X +X2 + U

n Level

Ordinary Smooth Supersmooth

CM KS IV
DM

CM KS IV
DM

0.5bdm bdm 2bdm 0.5bdm bdm 2bdm

250
5% 6.0 6.7 8.1 15.1 14.5 25.1 6.7 6.7 10.1 15.3 18.8 24.9

10% 13.2 13.5 12.1 25.4 26.0 42.3 13.1 13.4 15.1 25.2 30.1 39.7

500
5% 6.3 6.8 11.2 22.1 26.5 30.1 6.0 6.4 8.8 28.5 29.0 36.7

10% 12.3 13.5 18.0 35.2 40.7 47.8 12.2 13.1 15.5 41.8 43.2 51.6

4Empirically adjusted power results are obtained in the following way. Using the null model from Table 1, for each
parameter setting and for each nominal level we first obtain the quantile at which the empirical rejection rate is equal
to the nominal level, say the Q̂thα quantile for an α nominal level. In all subsequent models, the critical value is taken as
the Q̂thα quantile from the bootstrap distribution, rather than the typical (1− α) quantile.
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Table 2: Y = 1 +X +X2 + 2√
n
Z2 + U

n Level

Ordinary Smooth Supersmooth

CM KS IV
DM

CM KS IV
DM

0.5bdm bdm 2bdm 0.5bdm bdm 2bdm

250
5% 34.2 29.5 53.9 14.4 13.0 12.1 28.3 26.8 52.8 16.1 16.6 22.2

10% 46.6 41.7 66.4 30.6 30.7 29.0 45.8 41.5 67.5 28.4 29.7 30.9

500
5% 30.3 23.9 44.3 14.2 16.9 18.4 32.4 28.5 50.5 18.7 20.1 23.9

10% 47.6 35.9 58.7 28.6 29.0 30.2 52.2 41.3 66.2 28.8 29.9 34.3

Table 3: Y = 1 +X +X2 + 2√
n
sin (Z) + U

n Level

Ordinary Smooth Supersmooth

CM KS IV
DM

CM KS IV
DM

0.5bdm bdm 2bdm 0.5bdm bdm 2bdm

250
5% 41.0 39.9 7.5 24.2 25.7 25.5 36.9 36.1 5.5 25.0 29.2 32.4

10% 51.8 52.2 13.3 38.2 40.1 42.2 51.5 48.6 10.4 37.1 38.3 38.6

500
5% 32.8 37.5 6.7 23.2 26.7 27.7 39.1 41.8 6.2 30.0 32.5 33.4

10% 46.2 49.4 11.2 39.8 40.2 40.4 52.7 52.4 10.5 40.0 41.6 43.8

Table 4: Y = 1 +X +X2 + 5√
n
X sin (Z) + U

n Level

Ordinary Smooth Supersmooth

CM KS IV
DM

CM KS IV
DM

0.5bdm bdm 2bdm 0.5bdm bdm 2bdm

250
5% 34.6 35.6 6.3 20.8 22.5 20.5 30.1 30.9 5.0 20.4 25.5 26.8

10% 43.8 46.2 13.0 35.6 38.0 38.7 44.5 43.3 11.8 33.6 34.3 32.4

500
5% 27.8 40.6 5.0 21.8 22.2 24.4 32.7 39.0 5.1 25.4 26.6 30.2

10% 33.4 46.5 11.3 38.2 35.1 36.3 46.5 50.5 10.0 34.4 35.2 40.8

The results are encouraging and appear to reflect the theoretical findings. The bootstrap procedure

keeps the size of the Cramér-von Mises test and the Kolmogorov-Smirnov test reasonably close to the

nominal value for both types of measurement error but with a general over-rejection. The Wald test

based on the IV also shows an over-rejection in all cases which is slightly more severe than our tests.

In contrast, the DM test displays severe size distortions which are exacerbated when using a larger
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bandwidth; the test appears to be almost unusable in some cases. However, we should keep in mind

that this test is not designed to deal with situations of measurement error.

Table 2 displays power results for a quadratic alternative. In this case, the Wald test is conducted

on a correctly specified model and acts as a benchmark with which to compare the other tests. As

expected, the Wald test dominates the tests of this paper and that of DM. However, it is promising to

see that, at least at the 10% level, the power of our tests do not fall far behind that of the Wald test,

and in all cases dominate the test of DM. Given that the alternative is drifting at the rate n−1/2, it

is also encouraging to see that the power of our tests show no substantial decline - and even increase

in some situations. Interestingly, there appears to be little difference in power in the ordinary smooth

and supersmooth settings for our tests.

In Tables 3 and 4, a sinusoidal and an interactive sinusoidal alternative are considered, respectively.

The results are broadly similar in each case. It seems that neither the Cramér-von Mises test nor

the Kolmogorov-Smirnov test dominates the other; the Kolmogorov-Smirnov test is preferable with an

interactive sinusoidal alternative, while the Cramér-von Mises test has better power against a quadratic

alternative. The Wald test struggles to detect the higher nonlinearity in Tables 3 and 4, reflecting the

arguments given in Section 2, while our tests and the DM test perform well in these settings. However,

in all cases, our tests show the highest power.

7 Conclusion

This paper develops, to the best of our knowledge, the first nonparametric significance test for re-

gression models with classical measurement error in the regressors. The test is flexible in that the

measurement error can enter the model through the regressors of interest, through the controlling

variables, or through both. Furthermore, we allow for the characteristic function of the error distri-

bution to be estimated. We derive the asymptotic properties of the test and show it can detect local

alternatives at the
√
n-rate for both ordinary smooth and supersmooth measurement error. As a cost

of this
√
n-rate, the asymptotic distribution is case dependent and difficult to estimate in practice.

However, a consistent bootstrap procedure is provided to obtain critical values and is shown to work

well in finite samples. Although a practical approach to the choice of bandwidth is given, the problem

of choosing an optimal bandwidth for testing in the presence of measurement error is still an open

issue that needs to be resolved.
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A Proofs of Theorems

A.1 Proof of Theorem 1

Define dj = (Xj , Yj , Zj) and write Tn(ξ) = (n−1)
n Un(ξ), where Un(ξ) =

(
n
2

)−1∑n−1
j=1

∑n
k=j+1 pn(dj , dk; ξ)

for ξ = (ξ1, ξ2) is a second-order U-statistic with symmetric kernel

pn(dj , dk; ξ) =
1

2b3n

∫∫  (Yk − Yj)Kε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
+(Yj − Yk)Kε

(
x−Xk
bn

)
Kε

(
x−Xj
bn

)
Kν

(
z−Zj
bn

)
 ei(x,z)ξdxdz.

Let U∗n(ξ) = E[rn(d1; ξ)] + 2
n

∑n
j=1{rn(dj ; ξ)− E[rn(dj ; ξ)]} for rn(dj ; ξ) = E[pn(dj , dk; ξ)|dj ]. By

the Hájek projection (see, for example, Ahn and Powell, 1993, Lemma A.3), if

E[sup
ξ∈Ξ

pn(dj , dk; ξ)
2] = o(n), (A.1)

then

sup
ξ∈Ξ
|Un(ξ)− U∗n(ξ)| = op

(
n−1/2

)
. (A.2)

To show (A.1), note that

E[sup
ξ∈Ξ

pn(dj , dk; ξ)
2]

≤ 2

b6n
E

 supξ∈Ξ

∣∣∣∫∫ Kε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
ei(x,z)ξdxdz

∣∣∣2
×
{
E[Y 2

j |X∗j ] + E[Y 2
k |X∗k , Z∗k ]

}


=
2

b2n
E

 supξ∈Ξ

∣∣∣∫∫ Kε

(
x̃+Xk−Xj

bn

)
Kε (x̃)Kν (z̃) ei(Xk+bnx̃,Zk+bnz̃)ξdx̃dz̃

∣∣∣2
×
{
E[Y 2

j |X∗j ] + E[Y 2
k |X∗k , Z∗k ]

}


≤ 1

2π2b2n
E


{∫ |Kft(t)|

|f ftε (t/bn)|

(
supξ∈Ξ

|Kft(−t+bnξ1)||Kft(bnξ2)|
|f ftε (−t/bn+ξ1)||f ftν (ξ2)|

)
dt
}2

×
{
E[Y 2

j |X∗j ] + E[Y 2
k |X∗k , Z∗k ]

}


=O

b−2
n

(
inf

|t|≤2b−1
n

|f ft
ε (t)|

)−4
 , (A.3)

where the first step follows by Jensen’s inequality, the law of iterated expectations, and the indepen-

dence between (ε, ν) and Y as imposed in Assumption D (ii), the second step follows by the change

of variables x̃ = x−Xk
bn

and z̃ = z−Zk
bn

, the third step uses Lemma 1, and the last step follows from
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E[Y 2] < ∞ as assumed in Assumption D (i), infξ∈Ξ |f ft
ν (ξ2)| > c as assumed in Assumption D (ii),

and the fact that K ft is supported on [−1, 1] and is bounded as assumed in Assumption O (iii). Then,

(A.1) follows by (A.3) and Assumption O (ii) and (iv).

For the bias term of U∗n(ξ), under H0, we claim that it is asymptotically negligible, i.e.

sup
ξ∈Ξ
|E[rn(d1; ξ)]| = o

(
n−1/2

)
. (A.4)

To show (A.4), using Lemma 2, we write E[rn(d1; ξ)] as

E[rn(d1; ξ)] =
1

b3n

∫∫  E
[
K
(
x−X∗
bn

)]
E
[
Y K

(
x−X∗
bn

)
K
(
z−Z∗
bn

)]
−E

[
Y K

(
x−X∗
bn

)]
E
[
K
(
x−X∗
bn

)
K
(
z−Z∗
bn

)]
 ei(x,z)ξdxdz.

Then, (A.4) follows by Lemma 3. In particular, supξ∈Ξ |E[rn(d1; ξ)]| = O(bpn) = o
(
n−1/2

)
under

Assumption O.

For the main term of U∗n(ξ), we decompose 2rn(dj ; ξ) = r1,n(dj ; ξ) + r2,n(dj ; ξ), where

r1,n(dj ; ξ) =

∫∫∫  Kε (x̃)Kν (z̃)K (x∗) ei(Xj+bnx̃,Zj+bnz̃)ξ

×{Yjf − g} (Xj + bn(x̃− x∗))

 dx∗dx̃dz̃,

r2,n(dj ; ξ) =

∫∫∫∫  Kε (x̃)K (x∗)K (z∗) ei(Xj+bnx̃,z)ξ

×{gX∗,Z∗ − YjfX∗,Z∗} (Xj + bn(x̃− x∗), z − bnz∗)

 dx∗dz∗dx̃dz,

which are obtained using Lemma 2 and the change of variables x̃ =
x−Xj
bn

and z̃ =
z−Zj
bn

.

Since f , g, fX∗,Z∗ , and gX∗,Z∗ are p-times differentiable with p > 1 + 2α under Assumption

O, by expanding {Yjf − g}(Xj + bn(x̃ − x∗)) around Xj to the pth-order, we have r1,n(dj ; ξ) =

r∗1,n(dj ; ξ) + t1,n(dj ; ξ), where

r∗1,n(dj ; ξ) =

p∑
l=0

blnK
ft(bnξ2)

l!f ft
ν (ξ2)

∫
Kε (x̃) x̃leibnx̃ξ1dx̃{Yjf (l) − g(l)} (Xj) e

i(Xj ,Zj)ξ,

t1,n(dj ; ξ) =

p∑
l=0

bpn(−1)p−lK ft(bnξ2)

l!(p− l)!f ft
ν (ξ2)

∫∫


Kε (x̃) x̃leibnx̃ξ1K (x∗)x∗p−l

×

 {Yjf (p) − g(p)}
(
X̄j

)
−{Yjf (p) − g(p)} (Xj)

 ei(Xj ,Zj)ξ

 dx∗dx̃,
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for some X̄j lying between Xj and Xj + bn(x̃− x∗), which are obtained using the binomial theorem,

Lemma 1, and the properties of the kernel function K as assumed in Assumption O (iii).

For the main term r∗1,n(dj ; ξ), we have

sup
ξ∈Ξ

∣∣∣∣∣∣ 2n
n∑
j=1

{r∗1,n(dj ; ξ)− ros
1,∞(dj ; ξ)− E[r∗1,n(dj ; ξ)− ros

1,∞(dj ; ξ)]}

∣∣∣∣∣∣ = op(n
−1/2), (A.5)

for ros
1,∞(dj ; ξ) =

∑α
l=0 c

os
l (ξ1){Yjf (l) − g(l)} (Xj) e

i(Xj ,Zj)ξf ft−1
ν (ξ2), which follows by

V ar

sup
ξ∈Ξ

∣∣∣∣∣∣ 1√
n

n∑
j=1

{r∗1,n(dj ; ξ)− ros
1,∞(dj ; ξ)}

∣∣∣∣∣∣
 ≤ E[sup

ξ∈Ξ
{r∗1,n(dj ; ξ)− ros

1,∞(dj ; ξ)}2]

=O

 supξ∈Ξ |K ft(bnξ2)− 1|2E

supξ∈Ξ

∣∣∣∣∣
α∑
l=1

cos
l (ξ1){Y f (l) − g(l)}(X)

∣∣∣∣∣
2
+ b2n

 = o (1) ,

where the first equality follows by Lemma 5 and infξ∈Ξ |f ft
ν (ξ2)| > c as assumed in Assumption D (ii),

and the second equality follows by Assumption O (v), the compactness of Ξ, and K ft(bnξ2) → 1 as

n→∞.

For the residual term t1,n(dj ; ξ), we claim that it is negligible, i.e.

sup
ξ∈Ξ

∣∣∣∣∣∣ 2n
n∑
j=1

{t1,n(dj ; ξ)− E[t1,n(dj ; ξ)]}

∣∣∣∣∣∣ = op(n
−1/2), (A.6)

which follows by

V ar

sup
ξ∈Ξ

∣∣∣∣∣∣ 1√
n

n∑
j=1

t1,n(dj ; ξ)

∣∣∣∣∣∣
 ≤ E[sup

ξ∈Ξ
t1,n(dj ; ξ)

2]

=O

b2pn max
0≤l≤p

E

∫∫


∣∣Kε (x̃) x̃lK (x∗)x∗α+1−l∣∣
×
∣∣∣∣ {Y f (p) − g(p)}

(
X̄
)
− {Y f (p) − g(p)}(X)

∣∣∣∣
 dx∗dx̃


2


=O

b2p+2
n max

0≤l≤p
E

∫∫

∣∣Kε (x̃) x̃lK (x∗)x∗p−l(x̃− x∗)

∣∣
×{|Y ||m1,p|+ |m2,p|}(X)

 dx∗dx̃


2

=O

(
b2p+2
n max

0≤l≤p+1

(∫ ∣∣∣Kε (x̃) x̃l
∣∣∣ dx̃)2

E[{Y 2m2
1,p +m2

2,p}(X)]

)
= O(b2(p−α)+2

n ) = o(1),
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where the first equality follows by infξ∈Ξ |f ft
ν (ξ2)| > c as assumed in Assumption D (ii) and the

boundedness of K ftas assumed in Assumption O (iii), the second equality follows by Assumption O

(i), and the last equality follows by sup0≤l≤p+1

∫ ∣∣Kε (u)ul
∣∣ du = O(b−αn ), which is obtained using

Lemma 4.

Then, (A.5) and (A.6) together imply

sup
ξ∈Ξ

∣∣∣∣∣∣ 2n
n∑
j=1

{r1,n(dj ; ξ)− ros
1,∞(dj ; ξ)− E[r1,n(dj ; ξ)− ros

1,∞(dj ; ξ)]}

∣∣∣∣∣∣ = op(n
−1/2), (A.7)

By a similar argument, for ros
2,∞(dj ; ξ) =

∑α
l=0 c

os
l (ξ1)

∫
{g(l,0)
X∗,Z∗ − Yjf

(l,0)
X∗,Z∗} (Xj , z) e

i(Xj ,z)ξdz, we

can show supξ∈Ξ

∣∣ 2
n

∑n
j=1{r2,n(dj ; ξ) − ros

2,∞(dj ; ξ) − E[r2,n(dj ; ξ) − ros
2,∞(dj ; ξ)]}

∣∣ = op(n
−1/2), which

together with (A.7) imply

sup
ξ∈Ξ

∣∣∣∣∣∣ 2n
n∑
j=1

{rn(dj ; ξ)− ros
∞(dj ; ξ)− E[rn(dj ; ξ)− ros

∞(dj ; ξ)]}

∣∣∣∣∣∣ = op(n
−1/2). (A.8)

Note that Assumption O (v) implies E
[∫

Ξ r
os
∞(dj ; ξ)

2dξ
]
<∞. Then by Theorem 3.9 of Chen and

White (1998), we have
2√
n

n∑
j=1

{ros
∞(dj ; ξ)− E[ros

∞(dj ; ξ)]} ⇒ Gos(ξ). (A.9)

The conclusion follows by combining (A.2), (A.4), (A.8), and (A.9).

A.2 Proof of Theorem 2

The proof follows along the same lines as Theorem 1, except that (A.1) follows by (A.3) (obtained

using the boundedness of K ft as assumed in Assumption S (iii) instead of Assumption O (iii)) and

Assumption S (ii) and (iv). Also, E[rn(d1; ξ)]=0 for any ξ ∈ Ξ under Assumption S, i.e. the bias

is completely removed by using the infinite-order kernel. To achieve this we must expand {Yjf −

g}(Xj + bn(x̃−x∗)) around Xj to an infinite order instead of the pth-order to adapt to the smoothness

of the measurement error under Assumption S. In particular, by expanding {Yjf−g}(Xj +bn(x̃−x∗))

around Xj to an infinite order and using the binomial theorem, Lemma 1, and the properties of the
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kernel function K as assumed in Assumption S (iii), we obtain

r1,n(dj ; ξ) =
∞∑
l=0

blnK
ft(bnξ2)

l!f ft
ν (ξ2)

∫
Kε (x̃) x̃leibnx̃ξ1dx̃{Yjf (l) − g(l)} (Xj) e

i(Xj ,Zj)ξ.

It is worthy to note that we do not have the residual term t1,n as in the ordinary smooth case because

the expansion here is to the infinite order. For this r1,n(dj ; ξ), we have

sup
ξ∈Ξ

∣∣∣∣∣∣ 2n
n∑
j=1

{r1,n(dj ; ξ)− rss
1,∞(dj ; ξ)− E[r1,n(dj ; ξ)− rss

1,∞(dj ; ξ)]}

∣∣∣∣∣∣ = op(n
−1/2), (A.10)

for rss
1,∞(dj ; ξ) =

∑∞
l=0 c

ss
l (ξ1){Yjf (l) − g(l)} (Xj) e

i(Xj ,Zj)ξf ft−1
ν (ξ2), which follows by

V ar

sup
ξ∈Ξ

∣∣∣∣∣∣ 1√
n

n∑
j=1

{r1,n(dj ; ξ)− rss
1,∞(dj ; ξ)}

∣∣∣∣∣∣
 ≤ E[sup

ξ∈Ξ
{r1,n(dj ; ξ)− rss

1,∞(dj ; ξ)}2]

=O

sup
ξ∈Ξ
|K ft(bnξ2)− 1|2E

sup
ξ∈Ξ

∣∣∣∣∣
∞∑
l=1

css
l (ξ1){Yjf (l) − g(l)} (Xj)

∣∣∣∣∣
2
 = o(1),

where the first equality follows by Lemma 6 and infξ∈Ξ |f ft
ν (ξ2)| > c as assumed in Assumption D

(ii), and the last equality follows by Assumption S (v), the compactness of Ξ, and K ft(bnξ2) → 1 as

n→∞.

By a similar argument, for rss
2,∞(dj ; ξ)] =

∑∞
l=0 c

ss
l (ξ1)

∫
{g(l,0)
X∗,Z∗ − Yjf

(l,0)
X∗,Z∗} (Xj , z) e

i(Xj ,z)ξdz, we

can show supξ∈Ξ

∣∣∣ 2
n

∑n
j=1{r2,n(dj ; ξ)− rss

2,∞(dj ; ξ)− E[r2,n(dj ; ξ)− rss
2,∞(dj ; ξ)]}

∣∣∣ = op(n
−1/2), which

together with (A.10) imply

sup
ξ∈Ξ

∣∣∣∣∣∣ 2n
n∑
j=1

{rn(dj ; ξ)− rss
∞(dj ; ξ)− E[rn(dj ; ξ)− rss

∞(dj ; ξ)]}

∣∣∣∣∣∣ = op(n
−1/2). (A.11)

Note that Assumption S (v) implies E
[∫

Ξ r
ss
∞(dj ; ξ)

2dξ
]
<∞. Then by Theorem 3.9 of Chen and

White (1998), we have
2√
n

n∑
j=1

{rss
∞(dj ; ξ)− E[rss

∞(dj ; ξ)]} ⇒ Gss(ξ). (A.12)

The conclusion follows by combining (A.2), (A.4), (A.11), and (A.12).
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A.3 Proof of Theorem 3

The proof follows along the same lines as Theorem 1 and 2, except that under H1n, instead of (A.4),

we have

sup
ξ∈Ξ
|E[rn(d1; ξ)]− n−1/2µ∆(ξ)| = o(n−1/2), (A.13)

which immediately follows by Lemma 3 and H1n.

A.4 Proof of Theorem 4

We first introduce some notation needed in this proof. For some probability measureQ on a measurable

space (S,S) and a class of measurable functions F on S such that F ⊂ L2(Q), let N(F , | · |Q,2, δ)

denote the δ-covering number for F with respect to the L2(Q)-seminorm | · |Q,2. An envelope function

F : S → [0,∞] for F is characterised by the following property F (u) ≥ supf∈F |f(u)| for all u ∈ S

(van der Vaart and Wellner, 1996).

Since the proof for the ordinary smooth and supersmooth cases are very similar (given the results

from Theorems 1 and 2), we provide the proof only for the ordinary smooth case. Define

r̄n(ξ) =
2√
n

n∑
j=1

{rn(dj ; ξ)− E[rn(dj ; ξ)]},

for rn (dj ; ξ) defined as in the proof of Theorem 1. Note that supξ∈Ξ |
√
n {Tn(ξ)− E [Tn(ξ)]} − r̄n(ξ)| =

op(n
−1/2) from the proof of Theorem 1. Define the class of functions F (r)

n = {(x, y, z) 7→ r̄n(x, y, z; ξ) :

ξ ∈ Ξ}. For f ∈ F (r)
n , consider the empirical process indexed by F (r)

n : vn(f) = 1√
n

∑n
j=1 f(Xj , Yj , Zj).

We first use Chernozhukov, Chetverikov and Kato (2016, Theorem 2.1) to show sup
f∈F(r)

n
|vn(f)|

can be approximated by the supremum of a tight Gaussian process, Gn(f), with zero mean and

the same covariance function as vn(f). Thus, we begin by checking the required conditions for this

approximation result.

As shown in the proof of Theorem 1, sup
f∈F(r)

n
|f(x, y, z)| = Op(1). Define sup

f∈F(r)
n
|f(x, y, z)| =

C1h(x, y, z) where C1 <∞ and h(x, y, z) = Op (1) and an envelope function for F (r)
n as F (r)

n (x, y, z) =

C2h(x, y, z) where C1 < C2 <∞. With this envelope function, Lemma 7 gives

sup
Q
N(F (r)

n , |·|Q,2 , δ) = Op(1).
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Using this result and the bound on the envelope function F (r)
n , there exists a tight Gaussian process,

Gn(f), on l∞(F (r)
n ) with mean zero and the same covariance function as {vn (f) : f ∈ F (r)

n }. Following

Kato and Sasaki (2019, Theorem 3.1), extend vn linearly to F (r)
n ∪ (−F (r)

n ) = {f,−f : f ∈ F (r)
n } so

that |vn|F(r)
n

= sup
f∈F(r)

n ∪(−F(r)
n )

vn(f). Using Giné and Nickl (2016, Theorem 3.7.28), it can be shown

that Gn has uniformly continuous paths on the symmetric convex hull of F (r)
n for the L2 pseudo-metric

and {Gn (f) : f ∈ F (r)
n ∪ (−F (r)

n )} is a tight Gaussian process in l∞(F (r)
n ∪ (−F (r)

n )) with zero mean

and the same covariance function as {vn (f) : f ∈ F (r)
n ∪ (−F (r)

n )}.

The proof of Theorem 1 shows that supξ∈Ξ |r̄n(dj ; ξ)− 2√
n

∑n
j=1{ros

∞(dj ; ξ)−E[ros
∞(dj ; ξ)]}| = op(1)

and by Assumption 4, supξ∈ΞE|ros
∞(X,Y, Z; ξ)|2+l = Op (1), thus, sup

f∈F(r)
n
E|f(X,Y, Z; ξ)|2+l =

Op (1) for l = 0, 1, 2. Hence, Chernozhukov et al. (2016, Theorem 2.1) can be applied to F (r)
n ∪(−F (r)

n )

with, in the notation of that paper, B(f) = 0, q = 4, A = O(1), V = O(1), b = O(1), σ = O(1), and

γ = O (1/ log(n)) to show that a random variable Vn with the same distribution as sup
f∈F(r)

n
|Gn(f)|

exists and ∣∣∣∣∣ sup
f∈F(r)

n

|vn| − Vn

∣∣∣∣∣ = Op

(
log(n)5/4

n1/4
+

log(n)

n1/6

)
= op(1).

Define r̄Gn (ξ) = Gn(r̄n(ξ)) for ξ ∈ Ξ so that r̄Gn (ξ) is a tight Gaussian process in l∞ (Ξ) with zero mean

and the same covariance function as r̄n(ξ), giving supξ∈Ξ |r̄Gn (ξ)| the same distribution as Vn. Now

∣∣∣∣∣sup
ξ∈Ξ
|
√
n{Tn(ξ)− E[Tn(ξ)]}| − Vn

∣∣∣∣∣ ≤
∣∣∣∣∣sup
ξ∈Ξ
|
√
n{Tn(ξ)− E[Tn(ξ)]}| − sup

ξ∈Ξ
|r̄n(ξ)|

∣∣∣∣∣+

∣∣∣∣∣sup
ξ∈Ξ
|r̄n (ξ) | − Vn

∣∣∣∣∣ = op(1),

which implies P
{∣∣supξ∈Ξ |

√
n{Tn(ξ)− E[Tn(ξ)]}| − Vn

∣∣ > εn
}
≤ εn for some εn = O(n−c) with c > 0

(Dudley, 2002, Theorem 9.2.2). Combining these results, we have

P

{
sup
ξ∈Ξ
|
√
n{Tn(ξ)− E[Tn(ξ)]}| ≤ w

}
≥ P

{
sup
ξ∈Ξ
|r̄Gn (ξ)| ≤ w − εn

}
− εn

≥ P

{
sup
ξ∈Ξ
|r̄Gn (ξ)| ≤ w

}
− 4εn

(
1 + E[sup

ξ∈Ξ
|r̄Gn (ξ)|]

)
,

where the second inequality follows from Chernozhukov, Chetverikov and Kato (2015, Theorem 3).

Thus, it remains to bound E[supξ∈Ξ |r̄Gn (ξ)|]. In our case, Dudley’s entropy integral bound gives

E[sup
ξ∈Ξ
|r̄Gn (ξ)|] = O

(∫ 1

0

√
sup
Q
N(F (r)

n , |·|Q,2 , δ)dδ

)
= O(1),
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where the second equality uses Lemma 7. Therefore,

P

{
sup
ξ∈Ξ
|
√
n{Tn (ξ)− E[Tn(ξ)]}| ≤ w

}
≥ P

{
sup
ξ∈Ξ
|r̄Gn (ξ)| ≤ w

}
− o(1).

The final two steps of the proof are to show

P

{
sup
ξ∈Ξ
|r̄#
n (ξ)| ≤ w

∣∣∣∣dn
}
≥ P

{
sup
ξ∈Ξ
|
√
n{T#

n (ξ)− E[T#
n (ξ)]}| ≤ w

∣∣∣∣dn
}
− o (1) , (A.14)

P

{
sup
ξ∈Ξ
|r̄Gn (ξ)| ≤ w

}
≥ P

{
sup
ξ∈Ξ
|r̄#
n (ξ)| ≤ w

∣∣∣∣dn
}
− o(1), (A.15)

where r̄#
n (ξ) = r̄n(X#, Y #, Z#; ξ) and dn = {Xj , Yj , Zj}nj=1.

(A.14) can be shown by a straightforward application of the arguments of Theorem 1. For

(A.15), we appeal to Chernozhukov et al. (2016, Theorem 2.3). To this end, define v#
n (f) =

1√
n

∑n
k=1 f(X#

k , Y
#
k , Z

#
k ), where f ∈ F (r)

n . Taking B(f) = 0, q = 4, A = O(1), V = O(1), b = O(1),

σ = O(1), and γ = O (1/ log(n)), Chernozhukov et al. (2016, Theorem 2.3) gives that there exists a

random variable V #
n with the same distribution (conditional on dj) as sup

f∈F(r)
n
|Gn(f)| and

∣∣∣∣∣ sup
f∈F(r)

n

|v#
n (f)| − V #

n

∣∣∣∣∣ = Op

(
log(n)9/4

n1/4
+

log(n)2

n1/4
+

log(n)

n1/6

)
= op(1).

Therefore, for some εn = O(n−c) for c > 0,

P

{
sup
ξ∈Ξ
|r̄#
n (ξ)| ≤ w

∣∣∣∣dn
}
≥ P

{
sup
ξ∈Ξ
|r̄Gn (ξ)| ≤ w − εn

}
− εn ≥ P

{
sup
ξ∈Ξ
|r̄Gn (ξ)| ≤ w

}
− o(1),

where the second inequality follows again from Chernozhukov et al. (2015, Theorem 3) and Dudley’s

entropy integral bound. Combining these results, we have

P

{
sup
ξ∈Ξ
|
√
n{Tn(ξ)− E[Tn(ξ)]}| ≤ w

}
≥ P

{
sup
ξ∈Ξ
|r̄Gn (ξ)| ≤ w

}
− o(1)

≥P

{
sup
ξ∈Ξ
|r̄#
n (ξ)| ≤ w

∣∣∣∣dn
}
− o(1) ≥ P

{
sup
ξ∈Ξ
|
√
n{T#

n (ξ)− E[T#
n (ξ)]}| ≤ w

∣∣∣∣dn
}
− o (1) ,

and the conclusion follows by taking w to be ĉKSα , i.e. the (1− α)th quantile of KS#
n .
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A.5 Proof of Theorem 5

Let ζ̂ε(t) = 1
n

∑n
l=1 ζε,l(t) and ζ̂ν(t) = 1

n

∑n
l=1 ζν,l(t) for ζε,l(t) = cos(t(Xl−Xr

l )) and ζν,l(t) = cos(t(Zl−

Zrl )), and ζε(t) = E[ζε,1(t)] and ζν(t) = E[ζν,1(t)]. Note that f̂ ft
ε (t) =

∣∣ζ̂ε(t)∣∣1/2, f̂ ft
ν (t) =

∣∣ζ̂ν(t)
∣∣1/2,

f ft
ε (t) = |ζε(t)|1/2, and f ft

ν (t) = |ζν(t)|1/2.

For a random error η ∈ {ε, ν}, define

Aη(u) =
1

2π

∫
e−itu K ft(t)

f ft
η (t/bn)

Π̂η(t/bn)dt,

Rη(u) =
1

2π

∫
e−itu K ft(t)

f ft
η (t/bn)

Π̂res
η (t/bn)dt,

where Π̂η(t) = 1
n

∑n
l=1 Πη,l(t) for Πη,l(t) =

ζη(t)−ζη,l(t)
2ζη(t) and

Π̂res
η (t) =

(
2|ζ̂η(t)|1/2 + |ζη(t)|1/2

)(
|ζη(t)|1/2 − |ζ̂η(t)|1/2

)2

|ζη(t)|3/2|ζ̂η(t)|1/2
.

By expanding ζ̂η(t/bn) around ζη(t/bn), we obtain

K̂η(u) = Kη(u) +Aη(u) +Rη(u).

Here Aη(u) is the Fréchet derivative of K̂η(u) as a functional of ζ̂η(t/bn) at ζη(t/bn). Also note that

Π̂η(t) is of order (|ζη(t)|1/2 − |ζ̂η(t)|1/2) and Π̂res
η (t) is of order (|ζη(t)|1/2 − |ζ̂η(t)|1/2)2. So, Rη(u) is a

higher order term than Aη(u), and should be dominated by Aη(u) asymptotically.

Decompose

T̂n(ξ) = Ŝn(ξ) + T1,n(ξ) + · · ·+ T4,n(ξ),

where

Ŝn(ξ) =
1

n2b3n

n∑
j 6=k

(Yk − Yj)
∫∫



Kε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
+Aε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
+Kε

(
x−Xj
bn

)
Aε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
+Kε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
Aν

(
z−Zk
bn

)


ei(x,z)ξdxdz,
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T1,n(ξ) =
1

n2b3n

n∑
j 6=k

(Yk − Yj)
∫∫

Kε

(
x−Xj

bn

)
Kε

(
x−Xk

bn

)
Rν

(
z − Zk
bn

)
ei(x,z)ξdxdz,

T2,n(ξ) =
1

n2b3n

n∑
j 6=k

(Yk − Yj)
∫∫  Aε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
+Kε

(
x−Xj
bn

)
Aε

(
x−Xk
bn

)

 Aν

(
z−Zk
bn

)
+Rν

(
z−Zk
bn

)
 ei(x,z)ξdxdz,

T3,n(ξ) =
1

n2b3n

n∑
j 6=k

(Yk − Yj)
∫∫  Rε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
+Kε

(
x−Xj
bn

)
Rε

(
x−Xk
bn

)
 K̂ν

(
z − Zk
bn

)
ei(x,z)ξdxdz,

T4,n(ξ) =
1

n2b3n

n∑
j 6=k

(Yk − Yj)
∫∫  Aε

(
x−Xj
bn

)
+Rε

(
x−Xj
bn

)

 Aε

(
x−Xk
bn

)
+Rε

(
x−Xk
bn

)
 K̂ν

(
z − Zk
bn

)
ei(x,z)ξdxdz,

First, we show T1,n(ξ), . . . , T4,n(ξ) are asymptotic negligible, that is,

sup
ξ∈Ξ
|T1,n(ξ)| , . . . , sup

ξ∈Ξ
|T4,n(ξ)| = op(n

−1/2). (A.16)

For T1,n(ξ), we have

T1,n(ξ) =
1

2πn2bn

n∑
j 6=k

(Yk − Yj)



∫∫ 
1

2π

∫
e−i(t1+t2−bnξ1)x̃dx̃

×Kft(t1)Kft(t2)e
i

(
t1Xj+t2Xk

bn

)
f ftε (t1/bn)f ftε (t2/bn)

 dt1dt2

×
∫ 

1
2π

∫
e−i(t3−bnξ2)z̃dz̃

×Kft(t3)eit3Zk/bn

f ftν (t3/bn)
Π̂res
ν (t3/bn)

 dt3


=

1

2πn2bn

n∑
j 6=k

(Yk − Yj)


∫ Kft(t)Kft(−t+bnξ1)e

i

(
t(Xj−Xk)

bn

)

f ftε (t/bn)f ftε (−t/bn+ξ1)
dt

×Kft(bnξ2)ei(Xk,Zk)ξ

f ftν (ξ2)
Π̂res
ν (ξ2)


= Op

(
1

nbn(inf |t|≤2b−1
n
|f ft
ε (t)|)2

)
,

where the second equality follows by
∫
δ(u − b)m(u)du = m(b) with the Dirac delta function δ(u) =

1
2π

∫
e−iutdt, and the last equality follows from the properties of the kernel functionK as assumed in As-

sumption O (iii) and (B.4). By similar arguments, we can show T2,n(ξ) = Op

(
sup|t|≤2b−1

n
|Π̂ε(t)|

n1/2bn(inf|t|≤2b−1
n
|f ftε (t)|)2

)
,

T3,n(ξ) = Op

(
sup|t|≤2b−1

n
|Π̂res
ε (t)|

bn(inf|t|≤2b−1
n
|f ftε (t)|)2

)
, and T4,n(ξ) = Op

(
sup|t|≤2b−1

n
|Π̂ε(t)|2

bn(inf|t|≤2b−1
n
|f ftε (t)|)2

)
, and (A.16) follows by

(B.5), (B.6), Assumptions O and O’.
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Let aj = (Yj , Xj , Zj , X
r
j , Z

r
j ) and

p̂n(aj , ak, al) =

 q̂n(aj , ak, al) + q̂n(aj , al, ak) + q̂n(ak, aj , al)

+q̂n(al, aj , ak) + q̂n(ak, al, aj) + q̂n(al, ak, aj)

 ,

where

q̂n(aj , ak, al) =
1

6b3n

∫∫



Kε

(
x−Xj
bn

)
YkKε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
−YjKε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)

+ 1
2π

∫


e
−it

(
x−Xj
bn

)
YkKε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
−Yje

−it
(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
+Kε

(
x−Xj
bn

)
Yke
−it

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)
−YjKε

(
x−Xj
bn

)
e
−it

(
x−Xk
bn

)
Kν

(
z−Zk
bn

)


Πε,l(t/bn)Kft(t)

f ftε (t/bn)
dt

+ 1
2π

∫  Kε

(
x−Xj
bn

)
YkKε

(
x−Xk
bn

)
e
−it

(
z−Zk
bn

)

−YjKε

(
x−Xj
bn

)
Kε

(
x−Xk
bn

)
e
−it

(
z−Zk
bn

)
 Πν,l(t/bn)Kft(t)

f ftν (t/bn)
dt



ei(x,z)ξdxdz

Further decompose

Ŝn(ξ) = n−2(n− 1)(n− 2)Ûn(ξ) + S1,n(ξ) + · · ·+ S4,n(ξ),

where

Ûn(ξ) =

(
n

3

)−1 n−2∑
j=1

n−1∑
k=j+1

n∑
l=k+1

pn(aj , ak, al),

S1,n(ξ) =
6

n3

n−1∑
j=1

n∑
k=j+1

[pn(aj , ak, aj) + pn(ak, aj , ak)], S2,n(ξ) =
6

n3

n−1∑
j=1

n∑
k=j+1

[pn(ak, aj , aj) + pn(aj , ak, ak)],

S3,n(ξ) =
6

n3

n−1∑
j=1

n∑
k=j+1

[pn(aj , aj , ak) + pn(ak, ak, aj)], S4,n(ξ) =
6

n3

n∑
j=1

pn(aj , aj , aj).

We claim that S1,n(ξ), . . . , S4,n(ξ) are asymptotically negligible, i.e.

sup
ξ∈Ξ
|S1,n(ξ)| , . . . , sup

ξ∈Ξ
|S4,n(ξ)| = op(n

−1/2). (A.17)
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As S3,n(ξ) = S4,n(ξ) = 0, we focus on S1,n(ξ) and S2,n(ξ). Note that

q̂n(aj , ak, al) =
Yk − Yj
12πbn

∫∫∫


{
1

2π

∫
e−i(t1+t2−bnξ1)x̃dx̃

}{
1

2π

∫
e−i(t3−bnξ2)z̃dz̃

}
×Kft(t1)Kft(t2)Kft(t3)e

i

(
t1Xj+t2Xk+t3Zk

bn

)
f ftε (t1/bn)f ftε (t2/bn)f ftν (t3/bn)

×{1 + Πε,l(t1/bn) + Πε,l(t2/bn) + Πν,l(t3/bn)}


dt1dt2dt3

=
Yk − Yj
12πbn


∫ Kft(t)Kft(−t+bnξ1)e

it

(
Xj−Xk
bn

)
f ftε (t/bn)f ftε (−t/bn+ξ1)

dt
Kft(bnξ2)
f ftν (ξ2)

ei(Xk,Zk)ξ

×{1 + Πε,l(t/bn) + Πε,l(−t/bn + ξ1) + Πν,l(ξ2)}

 ,

where the first equality follows from the change of variables x̃ = x
bn

and z̃ = z
bn

and the second equality

follows by the property of the Dirac delta function, which implies

S1,n(ξ), S2,n(ξ) = Op

(
sup|t|≤2b−1

n
|Πε,l(t)|

nbn(inf |t|≤2b−1
n
|f ft
ε (t)|)2

)
, (A.18)

and (A.17) follows by (A.18), Assumptions O and O’, and Lemma 10.

Thus, our focus turns to Ûn(ξ). Let Û∗n(ξ) = E[r̂n(a1; ξ)] + 3
n

∑n
j=1{r̂n(aj ; ξ) − E[r̂n(aj ; ξ)]} for

r̂n(aj) = E[p̂n(aj , ak, al)|aj ]. By the Hájek projection (see, for example, Ahn and Powell, 1993, Lemma

A.3), if

E[sup
ξ∈Ξ

p̂n(aj , ak, al)
2] = o(n), (A.19)

then

sup
ξ∈Ξ

∣∣Ûn(ξ)− Û∗n(ξ)
∣∣ = op(n

−1/2). (A.20)

To show (A.19), note that

E[sup
ξ∈Ξ

p̂n(aj , ak, al)
2] ≤ 6E[sup

ξ∈Ξ
q̂n(aj , ak, al)

2]

≤
supξ∈Ξ

∣∣∣Kft(bnξ2)
f ftν (ξ2)

∣∣∣
12π2b2n

∫∫


Kft(t1)Kft(−t1+bnξ1)Kft(t2)Kft(−t2+bnξ1)
f ftε (t1/bn)f ftε (−t1/bn+ξ1)f ftε (t2/bn)f ftε (−t2/bn+ξ1)

×E
[
(Y 2
k + Y 2

j )ei(t1+t2)Xj/bne−i(t1+t2)Xk/bn
]

×E

 {1 + Πε,l(t1/bn) + Πε,l(−t1/bn + ξ1) + Πν,l(ξ2)}

×{1 + Πε,l(t2/bn) + Πε,l(−t2/bn + ξ1) + Πν,l(ξ2)}




dt1dt2

=O

(
(sup|t|≤2b−1

n
|Πε,l(t)|)2

b2n(inf |t|≤2b−1
n
|f ft
ε (t)|)4

)
, (A.21)
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where the first step follows from Jensen’s inequality and the last step follows by the boundedness of

E[Y 2|X∗] guaranteed by Assumption D (i). Then, (A.19) follows by (A.21), Assumptions O and O’,

and Lemma 10.

Decompose r̂n(aj ; ξ) = r̂∗n(aj ; ξ) + r̂εn(aj ; ξ) + r̂νn(aj ; ξ), where

r̂∗n(aj ; ξ) =

∫∫
ei(x,z)ξ

3b3n



Kε

(
x−Xj
bn

)
E
[
Y K

(
x−X∗
bn

)
K
(
z−Z∗
bn

)]
−YjKε

(
x−Xj
bn

)
E
[
K
(
x−X∗
bn

)
K
(
z−Z∗
bn

)]
+E

[
K
(
x−X∗
bn

)]
YjKε

(
x−Xj
bn

)
Kν

(
z−Zj
bn

)
−E

[
Y K

(
x−X∗
bn

)]
Kε

(
x−Xj
bn

)
Kν

(
z−Zj
bn

)
+E

[
K
(
x−X∗
bn

)]
E
[
Y K

(
x−X∗
bn

)
K
(
z−Z∗
bn

)]
−E

[
Y K

(
x−X∗
bn

)]
E
[
K
(
x−X∗
bn

)
K
(
z−Z∗
bn

)]



dxdz,

r̂εn(aj ; ξ) =

∫∫∫
Πε,j(t/bn)K ft(t)ei(x,z)ξ

6πb3n



E

[
e
−it

(
x−X∗
bn

)]
E
[
Y K

(
x−X∗
bn

)
K
(
z−Z∗
bn

)]
−E

[
Y e
−it

(
x−X∗
bn

)]
E
[
K
(
x−X∗
bn

)
K
(
z−Z∗
bn

)]
+E

[
K
(
x−X∗
bn

)]
E

[
Y e
−it

(
x−X∗
bn

)
K
(
z−Z∗
bn

)]
−E

[
Y K

(
x−X∗
bn

)]
E

[
e
−it

(
x−X∗
bn

)
K
(
z−Z∗
bn

)]


dtdxdz,

r̂νn(aj ; ξ) =

∫∫∫
Πν,j(t/bn)K ft(t)ei(x,z)ξ

6πb3n


E
[
K
(
x−X∗
bn

)]
E

[
Y K

(
x−X∗
bn

)
e
−it

(
z−Z∗
bn

)]
−E

[
Y K

(
x−X∗
bn

)]
E

[
K
(
x−X∗
bn

)
e
−it

(
z−Z∗
bn

)]
 dtdxdz,

which are obtained using Lemma 2.

For Û∗n(ξ), we first claim that it has the same bias term as U∗n(ξ), i.e.

E[r̂n(aj ; ξ)] = E[rn(dj ; ξ)], (A.22)

which follows from E[r̂εn(aj ; ξ)] = E[r̂νn(aj ; ξ)] = 0 and E[r̂∗n(aj ; ξ)] = E[rn(dj ; ξ)]. Here, E[r̂εn(aj ; ξ)] =

E[r̂νn(aj ; ξ)] = 0 is an immediate result of E[Πε,j(t/bn)] = E[Πν,j(t/bn)] = 0, and E[r̂∗n(aj ; ξ)] =

E[rn(dj ; ξ)] is shown by using Lemma 2.

For the main term in Û∗n(ξ), we first note that

3{r̂∗n(aj ; ξ)− E[r̂∗n(aj ; ξ)]} = 2{rn(dj ; ξ)− E[rn(dj ; ξ)]}.
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Also note that

r̂εn(aj ; ξ) =

∫
· · ·
∫

Πε,j(t/bn)K ft(t)

6πb3n





f ft(t/bn)gX∗,Z∗(x
∗, z∗)

−gft(t/bn)fX∗,Z∗(x
∗, z∗)

+f(x∗) {gX∗,Z∗(·, z∗)}ft (t/bn)

−g(x∗) {fX∗,Z∗(·, z∗)}ft (t/bn)


×ei((ξ1−t/bn)x+ξ2z)K

(
x−x∗
bn

)
K
(
z−z∗
bn

)


dxdzdx∗dz∗dt

=

∫
Πε,j(t/bn)K ft(t)

6πbn





f ft(t/bn)
∫∫

ei{(ξ1−t/bn)x∗+ξ2z∗}gX∗,Z∗(x
∗, z∗)dx∗dz∗

−gft(t/bn)
∫∫

ei{(ξ1−t/bn)x∗+ξ2z∗}fX∗,Z∗(x
∗, z∗)dx∗dz∗

+
∫∫

ei((ξ1−t/bn)x∗+ξ2z∗)f(x∗) {gX∗,Z∗(·, z∗)}ft (t/bn)dx∗dz∗

−
∫∫

ei((ξ1−t/bn)x∗+ξ2z∗)g(x∗) {fX∗,Z∗(·, z∗)}ft (t/bn)dx∗dz∗


×
∫∫

ei{(ξ1bn−t)x̃+ξ2bnz̃}K (x̃)K (z̃) dx̃dz̃


dt

=

∫
Πε,j(t)K

ft(tbn)K ft((ξ1 − t)bn)K ft(ξ2bn)

6π

 f ft(t)gft
X∗,Z∗(ξ1 − t, ξ2)− gft(t)f ft

X∗,Z∗(ξ1 − t, ξ2)

+f ft(ξ1 − t)gft
X∗,Z∗(t, ξ2)− gft(ξ1 − t)f ft

X∗,Z∗(t, ξ2)

 dt,

where the first equality follows by Lemma 11 and the second equality follows from the change of

variables x̃ = (x − x∗)/bn and z̃ = (z − z∗)/bn, which, by using the dominant convergence theorem,

implies

sup
ξ∈Ξ

∣∣∣∣∣∣∣r̂εn(aj ; ξ)−
∫

Πε,j(t)

6π

 f ft(t)gft
X∗,Z∗(ξ1 − t, ξ2)− gft(t)f ft

X∗,Z∗(ξ1 − t, ξ2)

+f ft(ξ1 − t)gft
X∗,Z∗(t, ξ2)− gft(ξ1 − t)f ft

X∗,Z∗(t, ξ2)

 dt

∣∣∣∣∣∣∣ = op(1).

By similar arguments, we have

sup
ξ∈Ξ

∣∣∣∣∣∣∣r̂νn(aj ; ξ)−
Πν,j(ξ2)

6π

∫  f ft(t)gft
X∗,Z∗(ξ1 − t, ξ2)

−gft(t)f ft
X∗,Z∗(ξ1 − t, ξ2)

 dt

∣∣∣∣∣∣∣ = op(1).

Then, by Theorem 3.9 of Chen and White (1998) and Assumption O’, we have

3√
n

n∑
j=1

{r̂n(aj ; ξ)− E[r̂n(aj ; ξ)]} ⇒ Ĝos(ξ). (A.23)
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Combining (A.16), (A.17), (A.20), (A.22), and (A.23), if H0 holds, (A.4) implies

√
nT̂n(ξ)⇒ Ĝos(ξ),

and if H1n holds, (A.13) implies
√
nT̂n(ξ)⇒ Ĝos(ξ) + µ∆(ξ).

A.6 Proof of Theorem 6

This proof follows along the same lines as Theorem 5, except that (A.16) follows by (??), (??), (B.5),

(B.6), Assumptions S and S’. Also (A.17) follows by (A.18), Assumptions S and S’, and Lemma 10.

Finally, (A.19) follows by (A.21), Assumptions S and S’, and Lemma 10.

Then, by Theorem 3.9 of Chen and White (1998) and Assumption S’, we have

3√
n

n∑
j=1

{r̂n(aj ; ξ)− E[r̂n(aj ; ξ)]} ⇒ Ĝss(ξ). (A.24)

Combining (A.16), (A.17), (A.20), (A.22), and (A.24), if H0 holds, (A.4) implies

√
nT̂n(ξ)⇒ Ĝss(ξ),

and if H1n holds, (A.13) implies
√
nT̂n(ξ)⇒ Ĝss(ξ) + µ∆(ξ).
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B Lemmas

Lemma 1. For a random error η with f ft
η (t) 6= 0 for all t ∈ R, we have

∫
Kη (u) eibnuξdu =

K ft(bnξ)

f ft
η (ξ)

,∫
Kη (u+ c)Kη (u) eibnuξdu =

1

2π

∫
e−itcK ft(t)K ft(−t+ bnξ)

f ft
η (t/bn)f ft

η (−t/bn + ξ)
dt.

Proof. The conclusion follows by using
∫
δ(u− b)m(u)du = m(b) with the Dirac delta function δ(u) ≡

1
2π

∫
e−iutdt for

∫
Kη (u) eibnuξdu =

∫ (
1

2π

∫
e−itu K ft(t)

f ft
η (t/bn)

dt

)
eibnuξdu

=

∫ (
1

2π

∫
e−i(t−bnξ)udu

)
K ft(t)

f ft
η (t/bn)

dt,∫
Kη (u+ c)Kη (u) eibnuξdu =

∫ (
1

2π

∫
e−it1(u+c) K ft(t1)

f ft
η (t1/bn)

dt1

)(
1

2π

∫
e−it2u K ft(t2)

f ft
η (t2/bn)

dt2

)
eibnuξdu

=
1

2π

∫∫ (
1

2π

∫
e−i(t1+t2−bnξ)udu

)
e−it1cK ft(t1)K ft(t2)

f ft
η (t1/bn)f ft

η (t2/bn)
dt1dt2.

Lemma 2. Under Assumption D, for {k1, k2} ∈ {0, 1} , we have

E

[
Y k1Kε

(
x−X
bn

)
Kk2
ν

(
z − Z
bn

)]
= E

[
Y k1K

(
x−X∗

bn

)
Kk2

(
z − Z∗

bn

)]
.

Proof. As the proofs are similar, we focus on the case k1 = k2 = 1. The result follows by

E

[
YKε

(
x−X
bn

)
Kν

(
z − Z
bn

)]
=

1

4π2

∫∫
e−i(t1x+t2z)/bn {E[Y |X,Z]fX,Z}ft (t1/bn, t2/bn)

K ft(t1)K ft(t2)

f ft
ε (t1/bn)f ft

ν (t2/bn)
dt1dt2

=
1

4π2

∫∫
e−i(t1x+t2z)/bngft

X∗,Z∗(t1/bn, t2/bn)K ft(t1)K ft(t2)dt1dt2

= E

[
Y K

(
x−X∗

bn

)
K

(
z − Z∗

bn

)]
,

where the second step uses Assumption D (ii) and the last step follows by the convolution theorem.
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Lemma 3. Under Assumption D and O/S, we have

∫∫ {
b−3
n E

[
Y K

(
x−X∗
bn

)]
E
[
K
(
x−X∗
bn

)
K
(
z−Z∗
bn

)]
− g(x)fX∗,Z∗(x, z)

}
ei(x,z)ξdxdz = τ1,n,∫∫ {

b−3
n E

[
K
(
x−X∗
bn

)]
E
[
Y K

(
x−X∗
bn

)
K
(
z−Z∗
bn

)]
− f(x)gX∗,Z∗(x, z)

}
ei(x,z)ξdxdz = τ2,n,

where τk,n = O(bpn) under Assumption O and τk,n = 0 under Assumption S for k = 1, 2.

Proof. As the proofs are similar, we focus on the statement concerning τ2,n. Define

J1,n(x) = b−1
n E

[
K

(
x−X∗

bn

)]
, J2,n(x, z) = b−2

n E

[
Y K

(
x−X∗

bn

)
K

(
z − Z∗

bn

)]
.

Under Assumption S, f and gX∗,Z∗ are both infinitely differentiable and K is an infinite-order

kernel, which implies J1,n(x) = f(x) and J2,n(x, z) = gX∗,Z∗(x, z).

Under Assumption O, f and gX∗,Z∗ are both p-times continuously differentiable and K is a pth-

order kernel, which implies J1,n(x) = f(x) + bpn∆1,n(x) and J2,n(x, z) = gX∗,Z∗(x, z) + bpn∆2,n(x, z),

where ∆1,n(x) = 1
p!

∫
f (p)(x̄)K(x∗)x∗pdx∗ for some x̄ lying between x and x − bnx̃∗ and ∆2,n(x, z) =∑p

l=1
1

l!(p−l)!
∫∫

g
(l,p−l)
X∗,Z∗ (¯̄x, ¯̄z)K(x∗)K(z∗)x∗lz∗p−ldx∗dz∗ for some (¯̄x, ¯̄z) lying between (x, z) and (x −

bnx̃
∗, z − bnz̃∗). The Lipschitz condition on f (p) and g(l,p−l)

X∗,Z∗ as assumed in Assumption O (i) implies

|∆1,n(x)| ≤ 1

p!
{µpK |f

(p)(x)|+ bnµ
p+1
K |m1,p(x)|},

|∆2,n(x, z)| ≤
p∑
l=1

1

l!(p− l)!
{µlKµ

p−l
K |g

(l,p−l)
X∗,Z∗ (x, z)|+ bn(µl+1

K µp−lK + µlKµ
p+1−l
K )|m4,p(x, z)|},

where µdK =
∫
K(u)|u|ddu. Then, the conclusion follows by

∫∫
{J1,n(x)J2,n(x, z)− f(x)gX∗,Z∗(x, z)} ei(x,z)ξdxdz

=

∫∫


{J1,n − f}(x)gX∗,Z∗(x, z)

+f(x){J2,n − gX∗.Z∗}(x, z)

+{J1,n − f}(x){J2,n − gX∗.Z∗}(x, z)

 ei(x,z)ξdxdz,

and the boundedness and the integrability of f , f (p),gX∗,Z∗ , g
(l,p−l)
X∗,Z∗ , m1,p, and m4,p as assumed in

Assumption O (i).
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Lemma 4.

Kε(x) =


∑α

h=0 c
os
h (i/bn)hK(h)(x) under Assumption O∑∞

h=0
µh

cssh!(i/bn)hγK(hγ)(x) under Assumption S

Proof. Under Assumption O, the conclusion follows by Lemma 3.1 of Fan (1995). Under Assumption

S, the conclusion follows by Lemma 5 of Dong, Otsu and Taylor (2019).

Lemma 5. Under Assumption O, we have

∫
Kε(x)xleibnxξ1dx = I {l ≤ α} cos

l (ξ1)l!b−ln + ibn

α∑
h=0

cos
h (−1)hξh+1

1

(h+ 1)!

∫
K(h)(x)xlx̄h+1

h dx,

for l = 0, 1, . . . , p, where x̄h lying between 0 and x for h = 1, · · · , α.

Proof. Note that

∫
Kε(x)xleibnxξ1dx =

α∑
h=0

cos
h (i/bn)h

∫
K(h)(x)xleibnxξ1dx

=
α∑
h=0

cos
h (i/bn)h

{
h∑
k=0

(ibnξ1)k

k!

∫
K(h)(x)xl+kdx+

(ibnξ1)h+1

(h+ 1)!

∫
K(h)(x)xlx̄h+1

h dx

}
,

where the first equality follows by Lemma 4 under Assumption O and the second equality follows by

expanding eibnxξ1 around x = 0 to the h-th order and x̄h lies between 0 and x for h = 1, . . . , α. Then,

the conclusion follows by using
∫
K(h)(u)ul+kdu = I{h = l + k}h!(−1)h for h ≥ l and k = 0, 1, . . . , α,

which follows by integration-by-parts and the properties of the kernel function K as assumed in

Assumption O (iii).

Lemma 6. Under Assumption S, we have

∫
Kε(x)xleibnξ1xdx = css

l (ξ1)l!b−ln .

Proof. Note that

∫
Kε(x)xleibnξ1xdx =

∞∑
h=0

µh

cssh!
(i/bn)hγ

∫
K(hγ)(x)xleibnξ1xdx

=
∞∑
h=0

µh

cssh!
(i/bn)hγ

∞∑
k=0

(ibnξ1)k

k!

∫
K(hγ)(x)xl+kdx,

46



where the first equality follows by Lemma 4 under Assumption S and the second equality follows by ex-

panding eibnxξ1 around x = 0 to an infinite order. Then, the conclusion follows by
∫
K(hγ)(u)ul+kdu =

I{hγ = l + k}(l + k)!(−1)l+k which follows by integration-by-parts and the properties of the kernel

function K as assumed in Assumption S (iii).

Lemma 7. There exist constants A, v ≥ 0 independent of n such that

sup
Q
N(F (r)

n , |·|Q,2 , δ) ≤

(
A|F (r)

n |Q,2
δ

)v
= Op(1),

for all 0 < δ ≤ 1 and where supQ is taken over all finitely discrete distributions on R3.

Proof. See Lemma 1 of Kato and Sasaki (2018). See also Corollary A.1 of Chernozhukov, Chetverikov

and Kato (2014).

Lemma 8. Under Assumption D, for a random error η ∈ {ε, ν}, we have

sup
|t|≤%n

|f̂ ft
η (t)− f ft

η (t)| = Op

(
n−1/2 log(%n)1/2

)
.

Proof. See Lemma 4 of Kato and Sasaki (2018).

Immediate results following Lemma 8 are

sup
ξ∈Ξ
|f̂ ft
ν (ξ2)− f ft

ν (ξ2)| = Op

(
n−1/2

)
, (B.1)

sup
|t|≤b−1

n

|f̂ ft
ε (t)− f ft

ε (t)| = Op

(
n−1/2 log(b−1

n )1/2
)
. (B.2)

Lemma 9. Under Assumption D, for a random error η ∈ {ε, ν} and %n = o (en), we have

sup
|t|≤%n

|Π̂η(t)| = Op

(
log(%n)1/2

n1/2(inf |t|≤%n
∣∣f ft
η (t)

∣∣)2

)
,

sup
|t|≤%n

|Π̂res
η (t)| = Op

(
log(%n)

n(inf |t|≤%n
∣∣f ft
η (t)

∣∣)4

)
.

Proof. The conclusion follows by Lemma 8 and

sup
|t|≤%n

|Π̂η(t)| ≤ sup
|t|≤%n

(|f̂ ft
η (t)− f ft

η (t)|+ 2|f ft
η (t)|)|f̂ ft

η (t)− f ft
η (t)|

2
∣∣f ft
η (t)

∣∣2 = Op

(
sup|t|≤%n |f̂

ft
η (t)− f ft

η (t)|
(inf |t|≤%n

∣∣f ft
η (t)

∣∣)2

)
,
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Π̂res
η (t) ≤ sup

|t|≤%n

(2|f̂ ft
η (t)− f ft

η (t)|+ 3|f ft
η (t)|)|f̂ ft

η (t)− f ft
η (t)|2∣∣f ft

η (t)
∣∣3|f̂ ft

η (t)|
= Op

(
sup|t|≤%n |f̂

ft
η (t)− f ft

η (t)|2

(inf |t|≤%n
∣∣f ft
η (t)

∣∣)4

)
.

Immediate results following Lemma 9 are

sup
ξ∈Ξ
|Π̂ν(ξ2)| = Op(n

−1/2), (B.3)

sup
ξ∈Ξ
|Π̂res

ν (ξ2)| = Op(n
−1), (B.4)

sup
|t|≤2b−1

n

|Π̂ε(t)| =


Op
(
n−1/2 log(b−1

n )1/2b−2α
n

)
under Assumption O

Op

(
n−1/2 log(b−1

n )1/2e2γ+1µεb
−γ
n

)
under Assumption S

, (B.5)

sup
|t|≤2b−1

n

|Π̂res
ε (t)| =


Op
(
n−1 log(b−1

n )b−4α
n

)
under Assumption O

Op

(
n−1 log(b−1

n )e2γ+2µεb
−γ
n

)
under Assumption S

. (B.6)

Lemma 10. Under Assumption D, we have

sup
|t|≤2b−1

n

|Πε,l(t)| =


Op
(
b−2α
n

)
under Assumption O

Op

(
e2γ+1µεb

−γ
n

)
under Assumption S

,

Proof. The conclusion follows by

sup
|t|≤2b−1

n

|Πε,l(t)| ≤
(sup|t|≤2b−1

n
|f ft
ε (t)|)2 + 1

2(inf |t|≤2b−1
n
|f ft
ε (t)|)2

= O

(
1

(inf |t|≤2b−1
n
|f ft
ε (t)|)2

)
.

Lemma 11. Under Assumption D, we have

E

[
e
−it

(
x−X∗
bn

)]
= e−itx/bnf ft(t/bn), E

[
Y e
−it

(
x−X∗
bn

)]
= e−itx/bngft(t/bn),

E

[
e
−it

(
x−X∗
bn

)
K

(
z − Z∗

bn

)]
= e−itx/bn

∫
{gX∗,Z∗(·, z∗)}ft (t/bn)K

(
z − z∗

bn

)
dz∗,

E

[
Y e
−it

(
x−X∗
bn

)
K

(
z − Z∗

bn

)]
= e−itx/bn

∫
{fX∗,Z∗(·, z∗)}ft (t/bn)K

(
z − z∗

bn

)
dz∗.
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Proof. As the proofs are similar, we focus on the last statement, which follows by

E

[
e
−it

(
x−X∗
bn

)
K

(
z − Z∗

bn

)]
=

∫∫
e
−it

(
x−x∗
bn

)
fX∗,Z∗(x

∗, z∗)K

(
z − z∗

bn

)
dx∗dz∗

= e−itx/bn

∫ {∫
eitx∗/bnfX∗,Z∗(x

∗, z∗)dx∗
}
K

(
z − z∗

bn

)
dz∗

= e−itx/bn

∫
{fX∗,Z∗(·, z∗)}ft (t/bn)K

(
z − z∗

bn

)
dz∗.
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