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Abstract

In a general one-sector model of stochastic growth where the marginal

productivity of capital at zero is finite but can vary widely due to technol-

ogy shocks, we derive explicitly the limiting optimal propensity to invest (the

"slope" of the optimal policy function) at zero. We then derive an explicit

condition that ensures it is optimal for capital stocks to regenerate with proba-

bility one if they are depleted to levels close enough to zero so that "long run"

consumption is strictly positive with probability one. For a widely used class of

utility and production functions, a strict violation of our regeneration condition

implies almost sure global extinction of capital under the optimal policy. Risk

aversion plays an important role in regeneration. Regeneration is likely to be

optimal when the degree of risk aversion (near zero) is either high or low, while

extinction may be optimal for intermediate levels of risk aversion.
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1 Introduction

A fundamental question in the study of economic growth and dynamic capital accu-

mulation is whether positive consumption levels are sustained in the long run. This

acquires particular significance when adverse realizations of exogenous random shocks

can reduce productivity of capital, leading to contraction of output, depletion of cap-

ital stock and reduction of consumption opportunities. The likelihood with which

capital stocks and consumption levels remain positive in the long run i.e., avoid con-

vergence to zero, depends on the probability with which capital stocks regenerate

when they are suffi ciently depleted; the latter is related to the incentive to invest

at small levels of output as well as the manner in which random shocks affect pro-

ductivity of capital when capital stocks are small. This paper examines the nature

of economic fundamentals that create dynamic incentives for regeneration of capital

near zero in a stochastic economy. In a general model of optimal economic growth

under uncertainty, we provide a fairly tight characterization of the optimal policy

function when output is suffi ciently small and use this to characterize the economic

conditions under which it is optimal to regenerate capital with probability one so as

to ensure positive long run consumption; in this context, we specifically focus on the

important role of risk aversion.

Our study is motivated by the broad objective of understanding the long run be-

havior of the economy and its relation to fundamentals. It also acquires significance

in view of the concern that social stability may not be compatible with extinction

of capital and zero long run consumption, and that intertemporal preferences of eco-

nomic agents may not adequately capture such social concerns.1 In applications of

the optimal economic growth model to (private and social) management of renew-

able natural resources whose natural growth is affected by exogenous environmental

shocks2, our analysis provides an understanding of the economics of conservation and

extinction of such natural assets. Finally, as avoidance of extinction of capital is a

necessary condition for convergence to a positive stochastic steady state as well as

unbounded expansion or sustained growth of the economy, our analysis contributes

to the theoretical understanding of these possibilities.

Specifically, we consider the well known one sector model of discounted stochastic

1Perhaps, this is an important motivation for the focus on non-zero steady states and their
stability in economic growth theory.

2See, Clark (2010).
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optimal growth with independent and identically distributed production shocks.3 We

allow for a fairly general class of concave production functions with the restriction that

the marginal productivity of capital at zero is finite for all realizations of the random

shock.4 As the behavior of the key economic variables near zero is an important

part of our analysis, it is natural to focus on production technologies with finite

productivity at zero (and particularly so, for applications of the model to natural

resource management). In terms of the productivity of capital when capital stocks

are large, we allow for production functions that may exhibit either bounded or

unbounded growth. We allow for technology shocks that can cause wide variation in

the productivity of capital; in particular, we allow for production functions that may

be globally unproductive under adverse shocks. Finally, we allow for a very general

class of strictly concave and smooth utility functions that satisfy a mild restriction

on relative risk aversion near zero.

As indicated above, the behavior of the stochastic process of capital and consump-

tion near zero depends on the distribution of productivity of capital (near zero) as

well as the optimal propensity to invest (or consume) when output is close to zero.

The latter captures the role of economic behavior and is directly influenced by the

nature of intertemporal preferences including risk aversion and discounting. With

the exception of a few well known examples where the utility and production func-

tions have specific functional forms that lead to closed form linear solutions for the

optimal policy function, the existing literature contains very little by way of a tight

characterization of the behavior of the optimal policy function near zero.

The first contribution of this paper is to provide an explicit estimate of the optimal

propensity to invest as output tends to zero in terms of the discount factor, the

distribution of productivity and the degree of relative risk aversion (near zero); while

this estimate is derived as a lower bound on the optimal propensity to invest near zero,

it is the exact limit of this propensity (as output goes to zero) as long as the optimal

consumption propensity is bounded away from zero. This explicit characterization of

the optimal policy function near zero in a general model (with no specific functional

3See, Levhari and Srinivasan (969), Brock and Mirman (1972); Olson and Roy (2006) contains a
survey of stochastic optimal growth theory.

4The prevalent use of production functions that satisfy the Inada condition (infinite productivity
at zero) is largely motivated by technical convenience and in the case of some examples, the ease of
obtaining explicit solutions to the dynamic optimization problem. There is not much of economic
argument for assuming arbitrarily high return on investment in economies with small capital stock.
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forms) is of independent interest and is likely to find many interesting applications

apart from those considered in this paper.

Second, we provide a tight condition for almost sure regeneration of capital near

zero under the optimal policy. This condition ensures that even if capital stocks are

depleted to levels close to zero, they recover with probability one (instead of converg-

ing to zero); in consequence, long run optimal consumption, output and capital are

strictly positive with probability one. In applications of the stochastic growth model

to management of renewable resources, our condition for regeneration ensures that

conservation with probability one is optimal. As the optimal investment propensity

at zero depends explicitly on risk aversion, risk, discounting and productivity, so does

our condition for regeneration.

Third, we obtain an explicit linear upper bound on the optimal investment policy

function for a family of widely used utility and production functions. In particular, we

consider the class of constant relative risk aversion (CRRA) utility functions and show

that for any such utility function there is a class of production functions for which the

explicit lower bound on the optimal propensity to invest near zero mentioned earlier

is also an upper bound on the optimal propensity to invest at any level of output.5

This result is also of independent interest and will find other interesting applications.

Fourth, for the specific family of utility and production functions mentioned above

our general condition for regeneration is tight; a strict violation of the condition

implies almost sure convergence to zero of all optimal capital and consumption paths.

Fifth, we explicitly highlight the role of risk aversion in the dynamic incentives

for regeneration of capital under uncertainty6. We show that if the discount factor

and the stochastic production technology are such that the regeneration condition is

satisfied when the relative risk aversion (at zero) is 1 (for instance, in the case of log

utility function), then regeneration is ensured for all admissible utility functions. If

the regeneration condition is strictly violated when the relative risk aversion at zero

is 1, almost sure regeneration is still ensured if relative risk aversion is either small

enough or large enough, but almost sure extinction may be optimal when relative risk

5It is well known that with CRRA utility functions, the optimal policy function is linear when
the production function is linear; our (linear) upper bound on the optimal investment function
generalizes this to a class of possibly nonlinear production functions.

6For an early analysis of the comparative dynamics of the curvature of the utility function, see
Danthine and Donaldson (1981). On a somewhat different note, Jones et al (2004) show that the
qualitative relationship between volatility and "mean" growth depends on the curvature of the utility
function.
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aversion is in an intermediate range (close to 1). This demonstrates the non-monotone

effect of increase in risk aversion on regeneration/extinction; increased curvature of

the utility function increases the incentive to smoothen intertemporal consumption

which makes the economy move away from extinction paths but at the same time,

higher risk aversion increases the incentive to favor certainty of current consumption

against the uncertainty of future consumption that works against the incentive to

accumulate and may push the economy towards extinction.

As mentioned above, regeneration near zero is necessary for convergence (in dis-

tribution) of capital and consumption processes to a positive stochastic steady state7.

Existence and stability of non-zero steady states is a key topic in economic growth

theory. In line with this, the early literature in stochastic growth theory focuses

on stochastic steady states whose support is bounded away from zero and therefore

makes assumptions to ensure that when output is close to zero, it is optimal to expand

output and capital even under the worst realization of the exogenous shock8. This

approach is somewhat restrictive as it rules out a wide class of economic environments

where for small levels of output, it may be optimal to allow capital and output to

decline under "bad" realizations of the shock and expand when the realizations are

"good"; indeed, almost sure expansion near zero is not even a technologically feasible

option if marginal productivity of capital at zero is less than one for certain shocks.9

Over the last two decades, a growing literature in stochastic growth theory has

extended the model to allow for production technologies where depending on the re-

alization of the exogenous shock, the output resulting from any level of capital input

may be arbitrarily small or large. Definitive conditions for global stability and posi-

tive steady state in this framework are outlined in Stachurski (2002), Nishimura and

Stachurski (2005) and Kamihigashi (2007); some of their key conditions are geared

towards ensuring almost sure regeneration near zero; these conditions involve restric-

tions on the stochastic technology and discounting, but they do not involve the utility

7An invariant distribution that puts no probability mass on zero.
8Brock and Mirman (1972) and several other early papers ensure this by assuming infinite mar-

ginal productivity at zero and strictly positive probability mass on the worst production shock.
See also, Mirman and Zilcha (1975), Brock and Majumdar (1978), Majumdar, Mitra and Nyarko
(1989), Olson (1989) and Hopenhayn and Prescott (1992). Less extreme conditions that involve
joint restrictions on preferences and technology are contained in Olson and Roy (2000), Mitra and
Roy (2006, 2012).

9Optimal paths may not be bounded away from zero even if the technology is assumed to be
infinitely productive near zero with probability one; see Mirman and Zilcha (1976) and Mitra and
Roy (2012).
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function or risk preference10. Our condition for regeneration is weaker than these con-

ditions and explicitly involves risk aversion or the curvature of the utility function.

While it is not our intention to focus on the issue of convergence to a stochastic steady

state in this paper, our condition for regeneration near zero can be useful in weaken-

ing the conditions for a globally stable positive steady state; we outline such a result

for the case of bounded growth technology using the characterization by Kamihigashi

and Stachurski (2014) of global stability of monotone stochastic processes.

Section 2 outlines the model and some basic results. Section 3 contains our key

result characterizing the optimal propensity to invest near zero. Section 4 outlines

our condition for almost sure regeneration near zero. Section 5 outlines an upper

bound on the optimal investment policy function for a specific family of utility and

production functions and uses this to illustrate the tightness of our condition for

regeneration. Section 6 discusses the effect of change in relative risk aversion on the

optimality of regeneration and extinction. Section 7 contains an informal discussion

on how our condition for regeneration can be used to ensure global convergence to a

positive stochastic steady state; the formal results pertaining to this are contained in

the Appendix.

2 Model

We consider an infinite horizon one-good representative agent economy. Let N denote
the set of natural numbers {0, 1, 2, ...} and N+ the set of strictly positive natural
numbers; let R+ and R++ denote respectively the sets of non-negative and strictly
positive real numbers. Time is discrete and is indexed by t ∈ N. The initial stock
of output y0 ∈ R+ is given. At each date t, the representative agent observes the
current stock of output yt ∈ R+ and chooses the level of current investment xt, and
the current consumption level ct, such that

ct ≥ 0, xt ≥ 0, ct + xt ≤ yt

This generates yt+1, the output next period through the relation

yt+1 = f(xt, rt+1)

10See also, Nishimura et al (2006).
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where f is the "aggregate" production function and rt+1 is a random production shock

realized at the beginning of period (t+ 1).

2.1 Production

The following assumption is made on the sequence of random shocks:

(R.1) {rt}∞t=1 is an independent and identically distributed random process de-

fined on a probability space (Ω,F , P ), where the marginal distribution function is

denoted by Ψ. The support of this distribution is a non-degenerate set A ⊂ R++.
The production function f : R+ × A → R+ is assumed to satisfy the following

standard monotonicity, concavity, measurability and smoothness restrictions on the

production function:

(T.1) Given any r ∈ A, f(., r) is assumed to be continuously differentiable and

concave on R+, with f(0, r) = 0; further, f ′(·, r) = ∂f(x,r)
∂x

> 0 on R+. For any x ≥ 0,

f(x, .) : A→ R+ is a (Borel) measurable function..
Note that (T.1) implies that

f ′(0, r) = lim
x↓0

f ′(x, r) <∞

i.e., for each realization of the random shock, marginal productivity is bounded. In

other words, we do not allow for production functions where the Inada condition holds

at zero.

For each r ∈ A, let B(r) denote the marginal product at zero investment:

B(r) = f ′(0, r).

Observe that for all x ≥ 0,

f(x, r) ≤ B(r)x (1)

We assume that

(T.2)
B = inf

r∈A
B(r) > 0, B = sup

r∈A
B(r) <∞. (2)

Note that (T.2) allows for production technologies that are unproductive at all levels
of capital input.

For any investment level x ≥ 0, let the upper and lower bound of the support of
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output next period be denoted by f(x) and f(x), respectively. In particular,

f(x) = sup
r∈A

f(x, r), f(x) = inf
r∈A

f(x, r). (3)

It is easy to check that f(.) and f(x) are non-decreasing on R+, f(0) = f(0) = 0 and

f(.) is concave on R+. Further, (T.1) and (T.2) imply that

0 < f(x) ≤ f(x) <∞ (4)

for all x > 0.11

2.2 Preferences

We denote by u the one period utility function from consumption and we assume

that:

(U.1) u : R+ → R ∪ {−∞} is twice continuously differentiable on R++, u′(c) >
0, u′′(c) < 0 for all c > 0.

(U.2) limc→0 u(c) = u(0); limc→0 u
′(c) = +∞.

Note that we allow for unbounded utility functions. For c > 0, let the Arrow-Pratt

measure of relative risk aversion at c be defined by:

ρ(c) = −u
′′(c)c

u′(c)

We assume that ρ(c) converges to a strictly positive number as c→ 0:

(U.3)
lim
c→0

ρ(c) = ρ0 > 0

2.3 The Optimization Problem

Given an initial stock y ∈ R+, a stochastic process {yt, ct, xt} is feasible from y if it

satisfies y0 = y, and:

(i) ct ≥ 0, xt ≥ 0, ct + xt ≤ yt, for all t ∈ N
(ii) yt = f(xt−1, rt) for t ∈ N+

11Thus, we do not allow for "unbounded shocks" though we allow the allow the output resulting
from any level of capital input to vary widely with the shock.
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and (iii) for each t ∈ N, {ct, xt} are Ft adapted where Ft is the (sub) σ-field generated
by partial history from periods 0 through t.

Let δ ∈ (0, 1) denote the time discount factor. The objective of the representa-

tive agent is to maximize the expected value of the discounted sum of utilities from

consumption:

E

[ ∞∑
t=0

δtu(ct)

]
Given y ≥ 0, define the stochastic process of consumption {cMt } by: cM0 = y, cMt+1 =

f(cMt , rt+1) for all t ≥ 0. Thus, cMt is an upper bound on feasible consumption in period

t. We assume that:

(D.1) For all y ≥ 0,

E

[ ∞∑
t=0

δtu(cMt )+

]
<∞

where u(c)+ = max{u(c), 0}.
Assumption (D.1) ensures that for any feasible stochastic process {yt, ct, xt} from

y ≥ 0, the objective of the representative agent

E

[ ∞∑
t=0

δtu(ct))

]

is well defined though it may equal −∞, and that (see, Kamihigashi 2007)

E

[ ∞∑
t=0

δtu(ct))

]
=
∞∑
t=0

δtE[u(ct)] (5)

Note that (D.1) is always satisfied if either u is bounded above or alternatively, if
limsupx→∞[f(x)/x] < 1 i.e., the technology exhibits bounded growth.

Given initial stock y ≥ 0, a feasible stochastic process {yt, ct, xt} is optimal from
y if for every feasible stochastic process {y′t, c′t, x′t} from y,

E

[ ∞∑
t=0

δtu(ct))

]
≥ E

[ ∞∑
t=0

δtu(c′t)

]

For y ≥ 0, let V (y), the value function be defined by
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V (y) = sup

{
E
∞∑
t=0

δtu(ct)) : {ct, xt, yt} is a feasible stochastic process from y

}

We assume:

(D.2) V (y) > −∞ for all y > 0.

Note that (D.2) is always satisfied if u(0) > −∞ or alternatively, if B > 1 i.e.,

the worst case production function is productive near zero; if neither of these hold, it

is satisfied under some restrictions on the discount factor δ.

Combined with assumption (D.1), we now have

−∞ < V (y) < +∞,∀y > 0

A consumption (policy) function, is a function c̃ : R+ → R+, satisfying:

0 ≤ c̃(y) ≤ y for all y ∈ R+

Note that this implies c̃(0) = 0. Associated with a consumption function c̃(·), is an
investment (policy) function x̃ : R+ → R, defined by

x̃(y) = y − c̃(y) for all y ∈ R+

Thus, the investment function x̃(·) satisfies:

0 ≤ x̃(y) ≤ y for all y ∈ R+

A feasible stochastic process {yt, ct, xt} is said to be generated by a consumption
function c̃(y) from initial stock y ∈ R+

y0 = y; yt+1 = f(yt − c̃(yt), rt+1) for t ≥ 0;

ct = c̃(yt), xt = yt − c̃(yt) for t ≥ 0.

A consumption (policy) function c(y) is said to be optimal if for every initial stock

y ∈ R+, the stochastic process {yt, ct, xt} generated by the function c(.) is optimal;
we refer to the investment policy function x(y) = y − c(y) as the optimal investment
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function.

Standard dynamic programming arguments (see Theorem 2.1 in Kamihigashi,

2007) imply:

Lemma 1 The value function V (y) satisfies the functional equation:

V (y) = max
0≤c≤y

[u(c) + δE[V (f(y − c, r)]]. (6)

V (y) is continuous, strictly increasing and strictly concave on R++. For each y ≥ 0,

the maximization problem on the right hand side of (6) has a unique solution c(y)

and the consumption (policy) function c(.) is the unique optimal consumption (policy)

function. For all y > 0, c(y) > 0 and x(y) = y−c(y) > 0. x(y) and c(y) are continuous

and strictly increasing in y on R+. For all y > 0,the following Ramsey-Euler equation

holds:

u′(c(y)) = δE[u′(c(f(x(y), r)))f ′(x(y), r)] (7)

= δ

∫
A

u′(c(f(x(y), r)))f ′(x(y), r)dΨ(r)

Let H : R+ × A be the optimal transition function defined by:

H(y, r) = f(x(y), r).

For y ∈ R+, the optimal stochastic process of output, consumption and investment
{yt(y), ct(y), xt(y)} (generated by the optimal policy function) from initial stock y are
given by

y0(y) = y, yt+1(y) = H(yt(y), rt+1), t ∈ N
ct(y) = c(yt(y)), xt(y) = x(yt(y)), t ∈ N

Let H : R+ → R+ and H : R+ → R+ denote the upper and lower envelope of the
transition functions defined by:

H(y) = f(x(y)), H(y) = f(x(y))

As f(.) is nondecreasing and x(y) is increasing, H(.) is non-decreasing on R+.
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3 Optimal Propensity to Invest

The behavior of the optimal policy function near zero is of crucial importance in

determining the possibility of regeneration of capital when the capital stock is suffi -

ciently depleted. In this section, we provide an explicit characterization of the limiting

optimal propensity to invest as output converges to zero in terms the discount factor,

the probability distribution of marginal productivity of capital as investment goes to

zero and the degree of relative risk aversion as consumption goes to zero.

3.1 Main Result

Recall, that ρ(c) = −u′′(c)c
u′(c) is the Arrow-Pratt measure of relative risk aversion at

c > 0. Under assumption (U.3), ρ(c) → ρ0 > 0 as c → 0; thus ρ0 is the (limiting)

risk aversion at zero. Also, recall that B(r) = f ′(0, r) is the marginal product at zero

investment corresponding to realization r of the productivity shock.

Define

s0 =
(
δE((B(r))1−ρ0

)1/ρ0 =

(
δ

∫
A

(B(r))1−ρ0dΨ(r)

)1/ρ0
(8)

Assumption (T.2) ensures that s0 is well defined and 0 < s0 < ∞.
Finally, define θ ∈ (0, 1] by

θ = min{s0, 1} (9)

The main result we establish in this section is as follows:

Proposition 1 (i)

lim
y→0

inf
x(y)

y
≥ θ = min {s0, 1} (10)

(ii) If the optimal propensity to invest x(y)
y
is bounded away from 1 as y → 0, then

s0 < 1 and

lim
y→0

x(y)

y
= s0 = θ

Part (i) of Proposition 1 provides an explicit lower bound θ for the optimal propen-

sity to invest as output converges to zero. This lower bound does not require the

production function or the utility function to have any specific functional form. Our

subsequent analysis of regeneration of capital near zero will use this lower bound.
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Note that (10) implies that if s0 ≥ 1, then x(y)
y
→ 1 as y → 0. Part (ii) of the proposi-

tion indicates that the lower bound θ is "tight" in the sense that it is the exact limit

of the optimal propensity to invest as output converges to zero (loosely, the slope of

the policy function at zero) if the optimal propensity to invest is bounded away from

1 i.e., if the optimal propensity to consume c(y)
y
is bounded away from zero.12

3.2 Proof of Proposition 1

We begin by stating a useful result reported in Mitra and Roy (2012, Lemma 4):

Lemma 2 (Mitra and Roy 2012) For any c1 > 0, c2 > 0, c2 ≥ c1, if ρ(c) ∈ [ρ, ρ] ⊂
R++ for all c ∈ [c1, c2], then(

c2

c1

)−ρ
≤ u′(c2)

u′(c1)
≤
(
c2

c1

)−ρ
. (11)

Next, we establish some bounds on the limiting behavior of the propensity to con-

sume as output tends to zero. The following lemma shows that the optimal propen-

sity to consume is bounded away from one (i.e., the optimal propensity to invest is

bounded away from zero); assumption (U.3) which ensures that relative risk aversion
is bounded away from zero plays an important role in this result.

Lemma 3
lim
y→0

sup
c(y)

y
< 1. (12)

Proof. Suppose to the contrary that limy→0 sup c(y)
y

= 1.Fix γ ∈ (0, 1).There exists

ỹ > 0 such that ρ(c) ≥ γρ0 for all c ∈ (0, f(ỹ)]. Choose η ∈ (1 − 1
B
, 1). Then,

f((1 − η)y) ≤ B(1 − η)y < y for all y ∈ (0, ỹ]. As limy→0 sup c(y)
y

= 1, there exists

a sequence {yn} converging to zero, yn ∈ (0, ỹ) for all n such that c(yn)
yn
≥ η for

all n.Then, f(x(yn), r) ≤ f(x(yn)) ≤ f((1 − η)yn) < yn for all r ∈ A. From the

12It is worth noting that if the production function is linear i.e., f(x, r) = rx, the utility function
exhibits constant relative risk aversion and θ < 1, then the optimal investment policy function is
given by x(y) = θy i.e., θ is the optimal propensity to invest at all levels of output. See, for instance,
de Hek (1999) and de Hek and Roy (2001).
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Ramsey-Euler equation (7):

1

δ
= E

[
u′(c(f(x(yn), r)))

u′(c(yn))
f ′(x(yn), r)

]
≥ E

[(
c(f(x(yn), r))

c(yn)

)−γρ0
f ′(x(yn), r)

]
, using Lemma 2

= E

[(
c(f(x(yn), r))

f(x(yn), r)

)−γρ0 (f(x(yn), r)

x(yn)

)−γρ0
f ′(x(yn), r))

](
c(yn)
yn

1− c(yn)
yn

)γρ0

≥ E

[(
f(x(yn), r)

x(yn)

)−γρ0
f ′(x(yn), r))

](
η

1− η

)γρ0
,

and taking the liminf as n→∞ and using Fatou’s Lemma (see, for instance, Section

4.3.3 in Dudley, 2002) we have

1

δ
≥ E

[
lim
n→∞

inf

(
f(x(yn), r)

x(yn)

)−γρ0
f ′(x(yn), r)

](
η

1− η

)γρ0
= E

[
(B(r))1−γρ0

]( η

1− η

)γρ0
so that

η

1− η ≤
(

1

δE [(B(r))1−γρ0 ]

) 1
γρ0

As ρ0 > 0 and the right hand side of the above inequality is independent of η, we

have a contradiction for η close enough to 1.

The next lemma establishes an upper bound on the limiting optimal propensity

to consume at zero under the assumption that it is strictly positive.

Lemma 4 Suppose that

lim
y→0

sup
c(y)

y
> 0.

Then, s0 < 1 and

lim
y→0

sup
c(y)

y
≤ 1− s0

Proof. Let z = limy→0 sup c(y)
y
> 0. Using Lemma 3, 0 < z < 1. We will now show

that

z ≤ 1− s(ρ0) (13)

13



Fix λ ∈ (0, 1) and M̂ > 0 such that M̂ < z
(1−z)B . There exists h ∈ (0,min{z, 1− z})

such that

M̂ ≤ (z − h)

(1− (z − h))B
for all h ∈ (0, h) (14)

Choose any ε, h such that 0 < ε < ρ0, h ∈ (0, h). There exists y > 0 such that

ρ0 − ε ≤ ρ(c) ≤ ρ0 + ε for all c ∈ (0, f(y)). (15)

and

f ′(y, r) ≥ λB for all r ∈ A (16)

By definition of z there exists a sequence {zn}∞n=1, zn ∈ (0, y) for all n, zn → 0 as

n→∞,{ c(z
n)

zn
} is convergent

z + h ≥ c(zn)

zn
≥ z − h for all n. (17)

From the Ramsey-Euler equation (7) and using Lemma 2 and (15), we have:

1

δ
= E

[
u′(c(f(x(zn), r)))

u′(c(zn)
f ′(x(zn), r)

]
≥ E

[(
c(f(x(zn), r))

c(zn)

)−(ρ0+ε)
f ′(x(zn), r)I[f(x(zn),r)≥zn]

]

+E

[(
c(f(x(zn), r))

c(zn)

)−(ρ0−ε)
f ′(x(zn), r)I[f(x(zn),r)<zn]

]
(18)

Observe that if f(x(zn), r) ≥ zn, then(
c(f(x(zn), r))

c(zn)

)−(ρ0+ε)
=

(
x(zn)

c(zn)

)−(ρ0+ε)(c(f(x(zn), r))

f(x(zn), r)

)−(ρ0+ε)(f(x(zn), r)

x(zn)

)−(ρ0+ε)
≥

(
x(zn)

c(zn)

)−ρ0 (c(f(x(zn), r))

f(x(zn), r)

)−ρ0 (f(x(zn), r)

x(zn)

)−ρ0 (1− (z − h)

(z − h)
B

)−ε
(using (17))

≥
(
x(zn)

c(zn)

)−ρ0 (c(f(x(zn), r))

f(x(zn), r)

f(x(zn), r)

x(zn)

)−ρ0
(M̂)ε (using (14))
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so that

E

[(
c(f(x(zn), r))

c(zn)

)−(ρ0+ε)
f ′(x(zn), r)I[f(x(zn),r)≥zn]

]

≥
(
M̂
)ε(x(zn)

c(zn)

)−ρ0
•

•E
((

c(f(x(yn), r))

f(x(yn), r)

f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r)I[f(x(zn),r)≥zn]

)
(19)

If f(x(zn), r) < zn, then(
c(f(x(zn), r))

c(zn)

)−(ρ0+ε)
≥
(
c(f(x(zn), r))

c(zn)

)−ρ0
=

(
x(zn)

c(zn)

)−ρ0 (c(f(x(zn), r))

f(x(zn), r)

f(x(zn), r)

x(zn)

)−ρ0
so that

E

[(
c(f(x(zn), r))

c(zn)

)−(ρ0−ε)
f ′(x(zn), r)I[f(x(zn),r)<zn]

]

≥ E

[(
c(f(x(zn), r))

f(x(zn), r)

f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r)I[f(x(zn),r)<zn]

](
x(zn)

c(zn)

)−ρ0
(20)

Using, (18), (19) and (20), we have

1

δ
≥
(
x(zn)

c(zn)

)−ρ0
E

[(
c(f(x(zn), r))

f(x(zn), r)

f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r)

]
min

{
M̂ ε, 1

}
(21)

which implies:(
c(zn)

zn

)−ρ0 (x(zn)

zn

)ρ0
≥ δE

[(
c(f(x(zn), r))

f(x(zn), r)

)−ρ0 (f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r)

]
min

{
M̂ ε, 1

}
(22)

15



For each r ∈ A,

lim
n→∞

inf

[(
c(f(x(zn), r))

f(x(zn), r)

)−ρ0 (f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r)

]
≥ z−ρ0(B(r))1−ρ0

(23)

Taking the liminf as n→∞ on both sides of (22) and using Fatou’s lemma:

lim
n→∞

inf
c(zn)

zn

−ρ0 (x(zn)

zn

)ρ0
≥ δE

[
lim
n→∞

inf

(
c(f(x(zn), r))

f(x(zn), r)

f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r))

]
min

{
M̂ ε, 1

}
(24)

Using (17),(23) and (24), we have(
z − h

1− (z − h)

)−ρ0
≥ z−ρ0δE

[
(B(r))1−ρ0

]
(M̂)ε.

As h, ε are arbitrary (and M̂ is independent of h, ε), we have(
z

1− z

)−ρ0
≥ z−ρ0δE

[
(B(r))1−ρ0

]
so that

(1− z)ρ0 ≥ δE
[
(B(r))1−ρ0

]
= (s0)

ρ0 (25)

This establishes (13) and also implies that s0 < 1. The proof is complete.

The next result is a corollary of the previous lemma:

Corollary 1
c(y)

y
→ 0, if s0 ≥ 1 (26)

and

lim
y→0

sup
c(y)

y
≤ 1− s0, if s0 < 1. (27)

Proof. If if s0 ≥ 1 and limy→0 sup c(y)
y

> 0, we have a contradiction to Lemma 4

using (26). On the other hand, if s0 < 1,(27) obviously holds if limy→0 sup c(y)
y

= 0; if

limy→0 sup c(y)
y
> 0, (27) follows from Lemma 4.

The next lemma indicates that the upper bound on the limiting optimal propensity

to consume at zero outlined in inequality (27) of Corollary 1 is the exact limit as long

16



as the optimal consumption propensity is bounded away from zero.

Lemma 5 Suppose that

lim
y→0

inf
c(y)

y
> 0. (28)

then

lim
y→0

c(y)

y
= 1− s0 (29)

Proof. Let
z = lim

y→0
inf

c(y)

y
, z = lim

y→0
sup

c(y)

y

Using Lemma 3 and (28)

0 < z ≤ z < 1. (30)

Further, from Lemma 4, s0 < 1 and z ≤ 1− s0. We will show that if (28) holds, then

z ≥ 1− s0 (31)

so that (using (30)), z = z = 1 − s0 and (29) holds. Fix ĥ ∈ (0,min{z, 1 − z}) and
λ̂ ∈ (0, 1). Choose any ε, h such that 0 < ε < ρ0, h ∈ (0, ĥ).There exists ŷ > 0 such

that

ρ0 − ε ≤ ρ(c) ≤ ρ0 + ε for all c ∈ (0, f(ŷ)). (32)

and

f ′(y, r) ≥ λB for all y ∈ (0, ŷ) (33)

By definition of z and without loss of generality, there exists a sequence {yn}∞n=1, such
that yn ∈ (0, ŷ) for all n, yn → 0 as n→∞, { c(y

n)
yn
} is convergent and for all n

z + h ≥ c(yn)

yn
≥ z − h for all n (34)

which also implies

1− z − h ≤ x(yn)

yn
≤ 1− z + h for all n (35)

Note that ĥ ∈ (0,min{z, 1− z}) and h ∈ (0, ĥ) implies that the right hand expression

of the second inequality in (34) and the left hand expression of the first inequality in

17



(35) are strictly positive. Then, for ρ > 0(
z + h

1− (z + h)

)−ρ
≤
(
c(yn)

yn

)−ρ(
x(yn)

yn

)ρ
≤
(

z − h
1− (z − h)

)−ρ
(36)

Let

M =
(z + ĥ)

(1− (z + ĥ))(z − ĥ)λB
(37)

ĥ ∈ (0,min{z, 1− z}) and (30) implies that 0 < M <∞. Further,

(z + h)

(z − h)(1− (z + h))λB
≤M for all h ∈ (0, ĥ). (38)

From the Ramsey-Euler equation (7) we have for each n:

1

δ
= E

[
u′(c(f(x(yn), r)))

u′(c(yn))
f ′(x(yn), r)

]
≤ E

[(
c(f(x(yn), r))

c(yn)

)−(ρ0−ε)
f ′(x(yn), r)I[f(x(yn),r)≥yn]

]

+E

[(
c(f(x(yn), r))

c(yn)

)−(ρ0+ε)
f ′(x(yn), r)I[f(x(yn),r)<yn]

]
(39)

where the inequality follows from Lemma 2 and (32). Observe that if f(x(yn), r) ≥ yn(
c(f(x(yn), r))

c(yn)

)−(ρ0−ε)
≤
(
c(f(x(yn), r))

c(yn)

)−ρ0
=

(
x(yn)

c(yn)

)−ρ0 (c(f(x(yn), r))

f(x(yn), r)

f(x(yn), r)

x(yn)

)−ρ0
so that

E

[(
c(f(x(yn), r))

c(yn)

)−(ρ0−ε)
f ′(x(yn), r)I[f(x(yn),r)≥yn]

]

≤
(
x(yn)

c(yn)

)−ρ0
E

[(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0
I[f(x(yn),r)≥yn]

]
(40)
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On the other hand, if f(x(yn), r) < yn(
c(f(x(yn), r))

c(yn)

)−(ρ0+ε)
=

(
x(yn)

c(yn)

)−(ρ0+ε)(c(f(x(yn), r))

f(x(yn), r)

)−(ρ0+ε)(f(x(yn), r)

x(yn)

)−(ρ0+ε)
≤

(
x(yn)

c(yn)

)−ρ0 (1− (z + h)

z + h

)−ε(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0
(z − h)−ε

(
f(x(yn), r)

x(yn)

)−ρ0
(λB)−ε

=

(
x(yn)

c(yn)

)−ρ0 (c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)−ρ0 ((1− z − h)(z − h)

z + h
λB

)−ε
≤

(
x(yn)

c(yn)

)−ρ0 (c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)−ρ0
M ε

where the first inequality follows from (16),(34) and (35) and the second inequality

uses (37). Thus,

E

[(
c(f(x(yn), r))

c(yn)

)−(ρ0+ε)
f ′(x(yn), r)I[f(x(yn),r)<yn]

]

≤
(
x(yn)

c(yn)

)−ρ0
E

[(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0
I[f(x(yn),r)<yn]

]
M ε

and combining this with (39) and (40), we have

1

δ
≤
(
x(yn)

c(yn)

)−ρ0
E

[(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0]
max{M ε, 1}

so that using (36)

(
z + h

1− (z + h)

)−ρ0
≤
(
x(yn)

c(yn)

)−ρ0
≤ δE

[(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0]
max{M ε, 1}

(41)

For each r ∈ A,

lim
n→∞

sup

[(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0]
≤ z−ρ0(B(r))1−ρ0 (42)
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Note that { c(f(x(y
n),r))

f(x(yn),r)
} is bounded away from zero so that

(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0
is uniformly bounded above by an integrable function; taking the limsup as n → ∞
on both sides of (41):(

z + h

1− (z + h)

)−ρ0
≤ δE

[
lim
n→∞

sup

(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0]
max{M ε, 1}

(see, for instance, Royden, 1988: Problem 12, Chapter 4), and using (42) we have(
z + h

1− (z + h)

)−ρ0
≤ z−ρ0δE

[
(B(r))1−ρ0

]
max{M ε, 1}.

As this inequality is shown to hold for all h ∈ (0, ĥ) and ε ∈ (0, ρ0) and as M is

independent of ε, h, we have(
z

1− z

)−ρ0
≤ z−ρ0δE

[
(B(r))1−ρ0

]
so that

(1− z)ρ0 ≤ δE
[
(B(r))1−ρ0

]
= (s0)

ρ0

which yields (31). This completes the proof the lemma.

Proof of Proposition 1:
Part (i) of the proposition follows from Corollary 1; in particular, (27) implies

that if s0 < 1, limy→0 inf x(y)
y
≥ s0 = θ. On the other hand, s0 ≥ 1 implies θ = 1 and

using (26), we have x(y)
y
→ 1 = θ as y → 0. This establishes (10). Part (ii) of the

proposition follows directly from Lemma 5.
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4 Regeneration of Capital

In this section, we outline our main result on regeneration of capital near zero. In par-

ticular, we use the bound on the optimal propensity to invest near zero characterized

in Proposition 1 to derive an explicit condition on the economic fundamentals under

which the optimal policy is such that capital regenerates near zero and consumption

is strictly positive in the long run with probability one.

We begin by imposing the following assumption on the production function:

(T.3)
f(x, r)

x
→ B(r) as x→ 0 uniformly in r on A.

Note that (T.3) is satisfied if the random shock is multiplicative (for instance, f(x, r) =

rh(x)) and A, the support of the distribution of random shocks, is a bounded subset

of R++.
Our condition for almost sure regeneration of capital near zero is as follows:

Condition R:
E[ln (θB(r))] > 0 (R)

Note that θ depends on the discount factor, the degree of risk aversion, the distri-

bution of random shocks and the marginal productivity of capital and therefore these

factors also determine whether or not Condition R holds. In particular, if θ < 1 so

that θ = s0 = (δE((B(r))1−ρ0)
1/ρ0 , Condition R is equivalent to:

(1/ρ0)
[
ln δ + lnE

(
(B(r))1−ρ0

)]
+ E ln(B(r)) > 0

which can be written as

E[ln(δB(r))] +
[{

lnE
(
(B(r))1−ρ0

)}
−
{
E ln(B(r)1−ρ0)

}]
> 0 (43)

Using Jensen’s inequality, the second term in square brackets on the left hand side of

inequality (43) reflects the interaction between risk aversion (near zero) and riskiness

of the productivity shock; it is always non-negative and it is strictly positive ifρ0 6= 1.
We will show that Condition R ensures the following. First, optimal outputs are

(loosely speaking) uniformly bounded away "in probability" from zero. Second, even

if optimal output, and therefore investment and consumption, reach arbitrarily small

levels from time to time, they will almost surely rebound instead of converging to
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zero; eventual extinction is never optimal.

Proposition 2 Assume (T.3) and Condition R. Then the following hold for all ini-
tial stocks y ∈ R++:

(i) For any ξ > 0, there exists α̂(y) > 0 such that

Pr{yt(y) < α̂(y)} < ξ for all t ∈ N (44)

(ii)

Pr{ lim
t→∞

sup yt(y) > 0} = 1 (45)

so that limt→∞ sup ct(y) > 0 and limt→∞ supxt(y) > 0 with probability one i.e., under

the optimal policy, capital stocks and consumption levels remain strictly positive in

the long run with probability one.

(iii) Extinction of capital occurs with zero probability i.e.,

Pr{xt(y)→ 0} = 0.

Proof. (i) Note that 0 < θ ≤ 1. Condition R implies that E[lnB(r)] > 0. Also

observe that as x(y) > 0 for all y > 0,using (4) we have H(y) = f(x(y)) > 0 for all

y > 0. We begin by showing that the following holds:

∃ σ̃ > 0 such that for every y > 0, M(y) = sup
t
E

{(
1

yt(y)

)σ(y)}
<∞. (46)

From Hardy et al (1952, pp. 152-7) we have

lim
σ↓0

ln

[
E

(
1

θB(r)

)σ] 1σ
= E ln

(
1

θB(r)

)
.

Using Condition R, E ln
(

1
θB(r)

)
= −E ln θB(r) < 0 and so there exists σ̃ > 0 such

that

ln

[
E

{(
1

θB(r)

)σ̃}] 1
σ̃

< 0

i.e.,

E

(
1

θB(r)

)σ̃
< 1. (47)
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We now show that the sequence
{
E
(

1
yt(y)

)σ̃}∞
t=0

is bounded above. Note that yt(y)

is bounded below and above by H t(y) > 0 and f
t
(y) <∞ so that 0 < E

(
1

yt(y)

)σ̃
<∞

for every t. Using (47), there exists ε > 0 small enough so that

λ = E

(
1

(1− ε)B(r)θ

)σ̃
∈ (0, 1). (48)

Using assumption (T.3) and (10), there exists a > 0 such that for all z ∈ (0, a),

r ∈ A,
H(z, r)

z
=
f(x(z), r)

x(z)

x(z)

z
≥ (1− ε)B(r)θ

Let

m =

(
1

H(a)

)σ̃
Then, m <∞. Note λ,m do not depend on t or the initial stock y. Then,(

1

yt+1(y)

)σ̃
=

(
1

H(yt(y), rt+1)

)σ̃
=

(
1

H(yt(y), rt+1)

)σ̃
I{yt(y)<a} +

(
1

H(yt(y), rt+1)

)σ̃
I{yt(y)≥a}

≤
(

1

(1− ε)B(rt+1)θyt(y)

)σ̃
I{yt(y)<a} +

(
1

H(a)

)σ̃
I{yt(y)≥a}

≤
(

1

(1− ε)B(rt+1)θyt(y)

)σ̃
+m

so that taking expectation (with respect to information in time 0):

E

{(
1

yt+1(y)

)σ̃}
≤ E

{(
1

(1− ε)B(rt+1)θ

)σ̃}
E

{(
1

yt(y)

)σ̃}
+m,

as yt(y) and rt+1 are independent

= λE

[(
1

yt(y)

)σ̃]
+m, using (48) (49)

From (49) it follows that the sequence
{
E
(

1
yt(y)

)σ̃}∞
t=0

is Cauchy and hence, conver-

gent and bounded. Thus, (46) holds. Note that M(y) > 0. Now, fix any y > 0 and
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choose any ξ > 0. Choose α̂(y) ∈ (0, y) such that:

α̂(y) ≤
(

ξ

M(y)

) 1
σ̃

. (50)

We will show that for all t ∈ N,

P{yt(y) < α̂(y)} ≤ ξ (51)

so that the lemma holds. To see that (51) holds for all t,suppose to the contrary that

there is some t for which (51) does not hold i.e.,

P{yt(y) < α̂(y)} > ξ. (52)

Then,

E

{(
1

yt(y)

)σ̃}
= E

[(
1

yt(y)

)σ̃
I[yt(y)<α̂(y)] +

(
1

yt(y)

)σ̃
I[yt(y)≥α̂(y)]

]

≥ E

[(
1

yt(y)

)σ̃
I[yt(y)<α̂(y)]

]
≥
(

1

α̂(y)

)σ̃
P{yt(y) < α̂(y)}

>

(
1

α̂(y)

)σ̃
ξ , using (52),

≥ M(y), using (50),

which contradicts (46). Thus (51) holds for all t. This establishes (44).

(ii) As c(ỹ) > 0 and x(ỹ) > 0 for all ỹ > 0, it is suffi cient to show that (45) holds.

To see (45), choose any ξ > 0 and let α̂(y) > 0 be as described in the proof of part

(i) of the proposition. Observe that

{ω ∈ Ω : lim
t→∞

yt(y) = 0} ⊂ ∪∞T=0{ω ∈ Ω : yt(y) < α̂(y) for all t ≥ T}

and as the as the sets {ω ∈ Ω : yt(y) < α̂(y) for all t ≥ T} are nested and expanding
in T,

Pr{ lim
t→∞

yt(y) = 0} ≤ lim
T→∞

Pr{yt(y) < α̂(y) for all t ≥ T}
≤ lim

T→∞
sup Pr{yT (y) < α̂(y)} < ξ, using (44).
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As ξ is arbitrary, Pr{limt→∞ yt(y) = 0} = 0 i.e., Pr{limt→∞ sup yt(y) > 0} = 1.

(iii) Follows immediately from (ii).

5 Tightness of Condition R

In this section, we illustrate the tightness of our general condition (Condition R) for
regeneration of capital near zero. We show that for a class of utility and production

functions that are widely used in the literature, a strict violation of Condition R
implies that all optimal paths converge to zero i.e., eventual extinction occurs with

probability one from all positive initial stocks. This result is stated as Proposition 4

in subsection 5.2.

The restricted family of utility and production functions that we consider in this

section are as follows. First, we confine attention to utility functions that satisfy

constant relative risk aversion i.e., we assume that:

(U.4)

u(c) =
c1−ρ0

1− ρ0
, ρ0 > 0, ρ0 6= 1

= ln c (corresponding to ρ0 = 1).

Second, we impose following joint restriction on the set of admissible production and

utility functions:

Condition B: For all r ∈ A, x ∈ R++,

f ′(x, r)xρ0

(f(x, r))ρ0
≤ (B(r))1−ρ0 (B)

Note that

lim
x→0

{
f ′(x, r)xρ0

(f(x, r))ρ0

}
= (B(r))1−ρ0

so that Condition B essentially requires that the function f ′(x,r)xρ0

(f(x,r))ρ0
is "maximized at

zero". The required inequality in (B) can be rewritten as:(
f ′(x, r)

f ′(0, r)

)1−ρ0 [f ′(x, r)x
f(x, r)

]ρ0
≤ 1, ∀x ∈ R++, r ∈ A
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which always holds if ρ0 ∈ (0, 1] but can also hold if ρ0 > 1.13

Example 1 Consider the family of production functions:

f(x, r) = 0, if x = 0

= r(x1−η + β)
1

1−η , β ≥ 0, η > 1

Note that f(x, r) satisfies assumptions (T.1)-(T.3). If β > 0, f exhibits bounded

growth and Condition B is satisfied as long as ρ0 ≤ η.14 If β = 0, f is a linear

production function and Condition B holds for all ρ0 > 0.

5.1 Upper bound on the Optimal Investment Function

In Section 3, we have shown that θ is always a lower bound on the optimal propensity

to invest near zero. We now show that for the family of utility and production

functions outlined above, θ is also an upper bound on the optimal propensity to

invest; further, this holds not just near zero but at any level of output i.e., we have an

upper bound on the optimal investment function. This is an important step towards

showing that optimal paths may converge to zero when Condition R does not hold.

It can be a useful result for other purposes.

Proposition 3 Assume (U.4) and Condition B. Then, the optimal propensity to
invest is bounded above by θ on R++

x(y)

y
≤ θ for all y ∈ R++ (53)

13If f is twice differentiable and η1(x, r), η2(x, r) are the first and second elasticities of the pro-
duction function defined by

η1(x, r) =
f ′(x, r)x

f(x, r)
, η2(x, r) = −

f ′′(x, r)x

f ′(x, r)
,

then Condition B holds if

ρ0 ≤
η2(x, r)

1− η1(x, r)
,∀x ∈ R++, r ∈ A.

14If ρ0 = η, the optimal policy function is linear and the optimal propensity to invest is θ; see,
among others, Benhabib and Rustichini (1994), Mitra and Sorger (2014).
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5.1.1 Proof of Proposition 3

If θ = 1, Proposition 3 is trivial. So, we focus on θ < 1 in which case θ = s0. The

proof first shows that θ is an upper bound on the optimal propensity to invest in

the finite horizon version of the dynamic optimization problem in Section 2 and then

uses policy convergence to extend this to the optimal policy function for the infinite

horizon problem.

Consider finite horizon version of the stationary stochastic dynamic optimization

problem outlined in section 2. In particular, for T ∈ N, and given initial stock y ≥ 0,

the agent maximizes:

E

[
T∑
t=0

δtu(c̃t)

]
over feasible a stochastic processes {ỹt, c̃t, x̃t}Tt=0 where ỹ0 = y, where {c̃t, x̃t} are Ft
adapted where Ft is the (sub) σ-field generated by partial history from periods 0

through t and:

(i) c̃t ≥ 0, x̃t ≥ 0 for t = 0, 1, ...T

(ii) c̃t + x̃t ≤ ỹt, ỹt+1 = f(x̃t, rt+1.) for t = 0, 1, ...T

Note that here is no terminal stock requirement in period T . Standard arguments can

be used to establish that there exists a unique optimal decision rule in each period t

and it depends only on the number of periods left till the end of the time horizon.15

Lemma 6 Consider the T−period finite horizon problem. There exist (unique) op-
timal consumption and investment functions denoted by cτ (y) and xτ (y) that depend

only on τ , the number of periods remaining till the end of the time horizon; in any

period t = T − τ , it is optimal to consume cτ (y) and invest xτ (y) if current output is

y. cτ (y) > 0, xτ (y) > 0 for all τ ∈ N and y > 0. For every τ ∈ N+, cτ (y) and xτ (y)

are continuous and strictly increasing on R+. The following stochastic Ramsey-Euler
equation folds for all τ ∈ N and y > 0 :

u′(cτ+1(y)) = δE[u′(cτ (f(xτ+1(y), r)))f ′(xτ+1(y), r)] (54)

Proof. Using induction on τ and fairly standard arguments as in the infinite horizon
case.
15See, among others, Majumdar and Zilcha (1987)
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The next lemma establishes a uniform upper bound on the optimal propensity to

invest in finite horizon problems.

Lemma 7 Assume (U.4) and Condition B. Further, suppose that θ < 1.Then, the

following hold:

(i) For every τ ∈ N and y > 0.

xτ (y)

y
≤ θ for all y > 0 (55)

(ii) The finite horizon optimal investment functions converge point-wise to the

optimal investment function for the infinite horizon problem i.e.,

lim
τ→∞

xτ (y) = x(y) for all y ≥ 0

Proof. (i) Note that as θ < 1

θ = s0 =
[
E((B(r))1−ρ0)

]1/ρ0 < 1.

As x0(y) = 0 for all y > 0, (55) holds for τ = 0. Suppose (55) holds for τ = t ∈ N.
For every y > 0, we have from (54) that:

(ct+1(y))−ρ0 = δE[(ct(f(xt+1(y), r)))−ρ0f ′(xt+1(y), r)]

and as (55) holds for τ = t, ct(y) ≥ (1− θ)y for all y > 0, and therefore,

(ct+1(y))−ρ0 = δE[(ct(f(xt+1(y), r)))−ρ0f ′(xt+1(y), r)]

≤ δE[((1− θ)(f(xt+1(y), r)))−ρ0f ′(xt+1(y), r)]

which implies that:(
ct+1(y)

y

)−ρ0
≤ δ(1− θ)−ρ0E

[(
f(xt+1(y), r)

xt+1(y), r

)−ρ0
f ′(xt+1(y), r)

][
xt+1(y)

y

]−ρ0
≤ δ(1− θ)−ρ0E

[
(B(r))1−ρ0

] [xt+1(y)

y

]−ρ0
, using Condition B

= (1− θ)−ρ0θρ0
[
xt+1(y)

y

]−ρ0
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so that (
xt+1(y)

y

)(
1− xt+1(y)

y

)−1
≤ θ

1− θ
which yields:

xt+1(y)

y
≤ θ.

Thus, (55) holds for all τ ∈ N.
(ii) The policy convergence follows from suffi cient conditions in Schäl (1975). In

particular, one can check that both conditions (GA) and (C) in Section 2 of that

paper are satisfied.16

Proposition 3 follows immediately from parts (i) and (ii) of the above lemma.

5.2 Global Extinction

We are now ready state the main result of this section:

Proposition 4 Assume (U.4) and Condition B. If

E[ln (θB(r))] < 0 (56)

then almost sure (eventual) extinction is optimal from all initial stocks i.e., {yt(y), ct(y), xt(y)}
→ 0 almost surely for all y ∈ R+.

Proof. First, consider the case where E[ln (B(r))] < 0. We will show that in this

case, every feasible stochastic process must converge to zero with probability one.

This is similar to the result reported in Kamihigashi (2006). Given any initial stock

y > 0, any feasible stochastic process {ỹt(y), c̃t(y), x̃t(y)} satisfies ỹt(y) ≤ yMt (y)

where {yMt (y)} is the stochastic process defined by yM0 = y, yMt+1 = f(yMt , rt+1) for all

t ≥ 0; as f(yMt , r) ≤ B(r)yMt for all r ∈ A, it is easy to check that for all t ≥ 1:

ln ỹt(y) ≤ ln yMt ≤ ln y +
t∑
i=1

lnB(rt) = ln y + t

[
1

t

t∑
i=1

lnB(rt)

]
(57)

and as rt’s are i.i.d., the strong law of large numbers implies 1
t

∑t
i=1 lnB(rt) →

E[ln (B(r))] with probability one as t → ∞;E[ln (B(r))] < 0 then implies that as
16If ρ0 > 1, we are in the "negative" case in Schäl (1975) and condition (C) specified in that paper

always holds (see discussion in Section 2 of that paper). If ρ0 ≤ 1, assumption (D.1) implies that
condition (C) in Schäl (1975) holds.
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t → ∞, the right hand side of (57) converges to−∞ and ỹt(y) → 0 with probability

one.

Next, we consider the case where E[ln (B(r))] ≥ 0. Condition (56) of the propo-

sition then implies that θ < 1 i.e., θ = s0 < 1. Consider the stochastic process

{yt(y), ct(y), xt(y)} generated by the optimal policy from initial stock y ≥ 0. This is

trivial if y = 0. So, consider y > 0. Using Proposition 3 we have

H(y, r) = f(x(y), r) =
f(x(y), r)

x(y)
x(y) ≤ B(r)x(y) ≤ B(r)θy

so that for all t ≥ 1

yt(y) = H(yt−1(y), rt) ≤ B(rt)θyt−1(y)

which can be used to show that

ln yt(y) ≤ ln y +
t∑
i=1

ln θB(rt) = ln y + t

[
1

t

t∑
i=1

ln θB(rt)

]

and using similar arguments as above, we have that (56) implies that as t → ∞,
yt(y)→ 0 with probability one.

6 Risk Aversion and Regeneration

Our condition for regeneration (Condition R) outlined in Proposition 2 allows us to
study the effect of change in risk aversion (near zero) on the optimality of regeneration

of capital (i.e., avoidance of extinction) and positive long run consumption.

We begin by showing that if Condition R is satisfied when ρ0, the (limiting)

Arrow-Pratt relative risk aversion at zero consumption, is equal to 1 (such as in the

case of the log utility function), then it is satisfied for all admissible utility functions;

in this case, change in risk aversion does not affect the optimality of regeneration.

Note that at ρ0 = 1, θ = s0 = δ so that Condition R is equivalent to requiring

E[ln(δB(r))] > 0.

Proposition 5 Assume (T.3). Suppose that

E[ln(δB(r))] > 0 (58)
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Then regardless of the degree of risk aversion i.e., for all ρ0 > 0, it is optimal to

regenerate capital near zero with probability one and in particular, the conclusions of

Proposition 2 always hold.

Proof. Note that (58) implies E[lnB(r)] > 0 which implies that Condition R holds

if θ = 1. If θ < 1, then as mentioned in Section 4, Condition R holds if and only if

(43) holds. Using Jensen’s inequality,

[{
lnE

(
(B(r))1−ρ0

)}
−
{
E ln(B(r)1−ρ0)

}]
≥ 0

so that (58) implies that (43) holds.

It is worth noting that (58) is the condition imposed in Kamihigashi (2007) to

ensure avoidance of extinction and convergence to a positive steady state; in fact, it

is the weakest such condition in the existing literature. Condition R is weaker than

(58) and they coincide only if ρ0 = 1.

Next, we consider the situation where Condition R is not satisfied when the risk

aversion parameter ρ0 = 1 and in particular, E[ln(δB(r))] < 0. Here, change in risk

aversion can alter the possibility of regeneration. In particular, we show that in

certain situations, regeneration may be optimal when the degree of risk aversion is

either low or high, but global extinction may be optimal when risk aversion is at an

intermediate level.

Proposition 6 Assume (T.3). Suppose that

E[ln(δB(r))] < 0 < E[lnB(r)]

Then the following hold:

(a) If ρ0 is close to 1, then for utility and production functions that satisfy (U.4)
and Condition B, eventual extinction with probability one is optimal from all initial

stocks.

(b) There exists ρ > 1 such that for all ρ0 > ρ, almost sure regeneration near zero

is optimal and in particular, the conclusions of Proposition 2 hold.

(c) If, further, δEB(r) > 1, there exists ρ ∈ (0, 1) such that for all ρ0 ∈ (0, ρ),

almost sure regeneration near zero is optimal and in particular, the conclusions of

Proposition 2 hold.
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Proof. (a) At ρ0 = 1, θ = δ so that E[ln(δB(r))] < 0 implies that (56) holds forρ0
close to 1 (θ being continuous in ρ0); the result then follows from Proposition 4.

(b) Consider ρ0 > 1. If θ = 1, then 0 < E[lnB(r)] immediately implies Condition

R for regeneration holds. So, consider θ < 1. Here, θ = s0 in which case Condition

R holds if, and only if, (43) holds i.e.,

E[ln(δB(r))] + q(ρ0) > 0 (59)

where the function q(ρ) is given by

q(ρ) =
[{

lnE
(
(B(r))1−ρ

)}
−
{
E ln(B(r)1−ρ)

}]
> 0

forρ > 1 as the distribution of B(r) is non-degenerate. We will show that q(ρ)→ +∞
as ρ → ∞ so that (59) (and therefore Condition R) holds for all ρ0 large enough.
Observe that

q(3) =

[
lnE

(
1

B(r)

)2
+ 2E lnB(r)

]
> 0

Consider anyρ > 3. Then

q(ρ) = (ρ− 1)

[
1

ρ− 1

{
lnE

(
(B(r))1−ρ

)}
+ E ln(B(r))

]

= (ρ− 1)

ln

{
E

(
1

B(r)

)ρ−1} 1
ρ−1

+ E ln(B(r))


≥ (ρ− 1)

[
1

2
ln

{
E

(
1

B(r)

)2}
+ E ln(B(r))

]

=
(ρ− 1)

2
q(3)→ +∞ as ρ→∞.

where the inequality in the third line follows from Liapounov’s Inequality17. This

completes the proof of part (b).

(c) As s0 → δEB(r) when ρ0 → 0, δEB(r) > 1 implies that θ = 1 for all ρ0 close

enough to 0; 0 < E[lnB(r)] then implies that Condition R holds for ρ0 small enough.

17See Chung (1974, pp. 47): E(|X|k) 1k ≤ E(|X|m) 1m where 1 < k < m <∞.
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7 Implications for Positive Steady State

Our condition for regeneration (Condition R) ensures that with probability one, op-
timal paths do not converge to zero and optimal outputs are strictly positive in the

long run with probability one. This indicates that if the stochastic process of optimal

output from any strictly positive initial stock converges in distribution to an invariant

distribution, then the support of the limit distribution is in R++ (it cannot assign
strictly positive probability to zero); such an invariant distribution would be the sto-

chastic analogue of a non-zero steady state in the deterministic growth model and we

can refer to it as a positive stochastic steady state. Under the convex structure of

our model, one may expect the steady state to be globally stable.

As mentioned in the introduction, the existing literature has identified conditions

that ensure a globally stable positive stochastic steady state. Our condition for re-

generation and Proposition 2 can be used to weaken these conditions. In particular, if

the production function satisfies bounded growth so that feasible outputs are almost

surely bounded above by some maximum sustainable output K < ∞, Proposition
2(i) would imply that under Condition R, the stochastic kernel of the optimal out-
put process is "bounded in probability" on (0, K]; this, in turn, allows us to use some

recent results on global stability of monotone stochastic process by Kamihigashi and

Stachurski (2014) to establish the existence of a globally stable positive stochastic

steady state. These arguments are formally outlined in the Appendix.

One implication of our previous analysis is the important role of consumption

utility and risk aversion in convergence to a positive steady state. In particular,

the analysis in Section 6 indicates that for a bounded growth technology, global

convergence to a positive stochastic steady state is generally ensured if the degree

of relative risk aversion near zero is either suffi ciently high or suffi ciently low, but

optimal paths may converge to zero almost surely for intermediate degrees of risk

aversion.
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Appendix
Bounded Growth Technology: Globally Stable Positive Steady State

In this appendix, we consider the case where the production technology exhibits

bounded growth i.e., from any initial stock, feasible consumption, investment and

output processes are uniformly bounded above. In particular, the production function

satisfies:

(T.4)

lim
x→∞

sup

[
f(x)

x

]
< 1

Define the maximum sustainable stock K ≥ 0 as

K = sup
{
x ≥ 0 : f(x) ≥ x

}
(60)

Assumption (T.4) ensures that K < ∞. For technical convenience we also assume
that:

(T.5) f and f are continuous and strictly increasing on R+. For every x >

0, f(x) < f(x) and for any υ > 1,

Pr{f(x, rt) ≤ υf(x)} > 0,Pr{f(x, rt) ≥
1

υ
f(x)} > 0.

Assumption (T.5) ensures that the distribution of output from any current in-

vestment is non-degenerate and that [f(x), f(x)] is the (essential) support of this

distribution. Note that continuity of f assumed in (T.5) implies that f(K) = K.

Under (T.5), the functions H,H and H defined in Section 2 are continuous and

strictly increasing in y. Further, for all y ∈ (0, K] and r ∈ A,

K ≥ H(y) ≥ H(y, r) ≥ H(y) > 0.

As x(y) > 0 for all y > 0, using assumption (T.4) and (T.5), H(y) > H(y) for all

y > 0 and H(y) < y, for all y > K. Define

β = inf{y > 0 : H(y) ≤ y}. (61)

Lemma 8 Assume (T.3),(T.4), (T.5) and Condition R. Then, β ∈ (0, K] and

further, (i) H(y) > y, for all y ∈ (0, β), (ii) H(β) = β and (iii) H(y) < y for all
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y ≥ β.

Proof. From Proposition 1, we have limy→0 inf x(y)
y
≥ θ. Observe that E(ln θB(r)) ≤

lnE(θB(r)) so that Condition R implies θE(B(r)) > 1. Choose λ0 ∈ ( 1
θE(B(r))

, 1).

There exists ε > 0 such that for all y ∈ (0, ε) and r ∈ A,

H(y, r)

y
=
f(x(y), r)

y
=
f(x(y), r)

x(y)

x(y)

y
≥ B(r)λ0θ

so that E(H(y, r)) ≥ λ0E(B(r))θy > y and in particular, H(y) > y, for all y ∈
(0, ε).Thus, K ≥ β > ε > 0 and H(β) = β. This also implies that H(β) < β. From

the Ramsey-Euler equation (7):

u′(c(β)) = δE[u′(c(H(β, r)))f ′(x(β), r)]

≥ δE[u′(c(H(β)))f ′(x(β), r)] = δE[u′(c(β))f ′(x(β), r)]

so that δE[f ′(x(β), r)] ≤ 1. As x(y) is strictly increasing in y we have that for all

y > β, δE[f ′(x(y), r)] < 1. Once again using the Ramsey-Euler equation, for all y > β,

u′(c(y)) = δE[u′(c(H(y, r)))f ′(x(y), r)]

≤ δu′(c(H(y)))E[f ′(x(y), r)] < u′(c(H(y)))

and as c(y) is strictly increasing, this implies that H(y) < y for all y > β. This

completes the proof.

We are now ready to state the result on global stability:

Proposition 7 Assume (T.3),(T.4), (T.5) and Condition R. Then, there exists
a globally stable invariant distribution for the stochastic process of optimal outputs

{yt(y)} that assigns probability one to (0, K]. For any initial output y ∈ (0, K],

optimal outputs converge in distribution to this positive stochastic steady state.

Proof. The proof is entirely based on Kamihigashi and Stachurski (2014), hereafter
K-S. Let S = (0, K] be the state space and let F be the set of all Borel subsets of S.
Let Q be the associated kernel defined by:

Q(x,B) = Pr{H(x, r) ∈ B},∀B ∈ F .
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Define the notion of stationary (invariant) distribution, unique stationary distribution

and global stability of Q on S as in Section 2.1 in K-S. Note that global stability of

Q on S is equivalent to the existence of a unique invariant distribution on S and

convergence (in distribution) to this invariant distribution from all y ∈ S. Let P be

the probability measure defined on the product space in the usual manner. From

Theorem 1 in K-S, global stability of Q is established if: (a) Q is increasing, (b)

Q has an excessive distribution, (c) Q is order reversing, and (d) Q is bounded in

probability. These concepts are formally defined in Sections 2.1 and 2.2 of K-S.

From Remark 3 in K-S, it follows that since H(y, r) is increasing in y, Q is increas-

ing. As S has a greatest element (namely, K), Q has an excessive distribution (see

Remark 2 in K-S). We now show that Q is order reversing. From Lemma 8, H(y) < y

for all y ∈ [β,K]. As H is continuous, there exists ỹ ∈ (0, β) such that H(y) < y for

all y ∈ [ỹ, K]. It is suffi cient to show that for any y1, y2 ∈ (0, K], y2 ≥ y1 there exists

t ∈ N+ such that

P{yt(y2) ≤ ỹ} > 0 and P{yt(y1) ≥ ỹ} > 0.

As H(y) < y for all y ∈ [ỹ, K]. There exists τ 1 ∈ N such that for any t ≥ τ 1, H
t(y2) <

ỹ (where H i(.) = H(H i−1(.)), H1 = H); using assumption (T.5),

P{yt(y2) < ỹ} > 0. (62)

From Lemma 8, H(y) > y for all y ∈ (0, β] and further, H(y) ≥ min{y, β} for all
y ∈ (0, K].As ỹ ∈ (0, β), there exists τ 2 ∈ N such that for any t ≥ τ 2, H

t
(y1) > ỹ

(where H
i
(.) = H(H

i−1
(.)), H

1
= H) and using assumption (T.5),

P{yt(y1) > ỹ} > 0. (63)

For t ≥ max{τ 1, τ 2), both (62) and (63) hold and thus, Q is order reversing. Finally,
we show that Q is bounded in probability i.e., the sequence {Qt(y, .)} is tight for all
y ∈ S. Here, Qt is the t− th order kernel giving the probability of transiting from y

to B ∈ F in t steps and formally defined by

Q1 = Q,Qt(y,B) =

∫
Qt−1(z,B)Q(y, dz).
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Now, for any y ∈ S, the sequence {Qt(y, .)} is tight if for any ξ > 0, there exists a

compact set D ⊂ S such that Qt(y, S −D) ≤ ξ for all t. Proposition 2(i) shows that

for any y ∈ (0, K] and for any ξ > 0, there exists α̂(y) > 0 such that

P{yt(y) < α̂(y)} < ξ for all t.

Defining D = [ α̂(y), K], we can see that Q is bounded in probability. The proof is

complete.
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