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Abstract

This paper proposes a density-weighted average derivative estimator based on

two noisy measures of a latent regressor. Both measures have classical errors with

possibly asymmetric distributions. We show that the proposed estimator achieves

the root-n rate of convergence, and derive its asymptotic normal distribution for

statistical inference. Simulation studies demonstrate excellent small-sample perfor-

mance supporting the root-n asymptotic normality. Based on the proposed esti-

mator, we construct a formal test on the sub-unity of the marginal propensity to

consume out of permanent income (MPCP) under a nonparametric consumption

model and a permanent-transitory model of income dynamics with nonparametric

distribution. Applying the test to four recent waves of U.S. Panel Study of Income

Dynamics (PSID), we reject the null hypothesis of the unit MPCP in favor of a

sub-unit MPCP, supporting the buffer-stock model of saving.
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1 Introduction

Rational forward-looking agents should have a unit marginal propensity to consume out

of permanent shocks in income (MPCP). Carroll (2009) demonstrates that the MPCP is

strictly less than one in the context of the buffer-stock model where inpatient consumers

have a standard precautionary saving motive, and further shows through simulations

across a wide range of structural assumptions that the MPCP ranges from 0.75 to 0.92.

Thus, differentiating between the standard model and Carroll’s buffer-stock model can be

accomplished by accessing whether the MPCP is strictly less than one.

When we take this testable implication of the buffer-stock model to statistical inference

based on empirical data, we encounter a fundamental issue. Namely, we do not observe

the permanent income in data. If we could observe the permanent income shock X∗, as

well as the consumption growth Y , then a statistical inference about the theory of Carroll

boils down to inference about the nonparametric regression function g(·) = E[Y |X∗ = ·].

Specifically, rejecting the null hypothesis that a (weighted) average derivative of g is

greater than or equal to one against the alternative that it is strictly less than one will

provide a statistical support for the theory of Carroll. Under the unobservability of

the permanent income shock X∗ in data, however, the existing econometric methods of

estimation and inference for (weighted) average derivatives do not apply. To overcome

this, we develop a novel method and theory of estimation and inference for weighted

average derivatives when the latent regressor X∗ is unobserved, but two noisy measures

of X∗ are available in data, as is the case with the standard permanent-transitory models

of earnings and income dynamics.

This paper, in terms of its technical aspects, belongs to the vast literature on mea-

surement error models and deconvolution. See books by Carroll, Ruppert, Stefanski and

Crainiceanu (2006), Meister (2009) and Horowitz (2009) and surveys by Chen, Hong and

Nekipelov (2011), Schennach (2016) and Schennach (2021) for reviews. The literature on

deconvolution started out with the deconvolution kernel density methods under known

error distributions (Carroll and Hall, 1988; Stefanski and Carroll, 1990; Fan, 1991a,b; Bis-

santz, Dümbgen, Holzmann and Munk, 2007; Bissantz and Holzmann, 2008; van Es and

Gugushvili, 2008; Lounici and Nickl, 2011; Schmidt-Hieber, Munk and Dümbgen, 2013),
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followed by those under unknown error distributions (Diggle and Hall, 1993; Horowitz

and Markatou, 1996; Neumann and Hössjer, 1997; Efromovich, 1997; Li and Vuong, 1998;

Delaigle, Hall and Meister, 2008; Johannes, 2009; Comte and Lacour, 2011; Kato and

Sasaki, 2018; Kato, Sasaki and Ura, 2021). Among the latter set of papers, Horowitz

and Markatou (1996) and Delaigle, Hall and Meister (2008) use repeated measurements

with symmetrically and identically distributed errors, while Li and Vuong (1998) propose

an alternative estimator based on Kotlarski’s lemma (Kotlarski, 1967) that does not re-

quire known error distribution – also see Bohnomme and Robin (2010) and Comte and

Kappus (2015). Also related is Adusumilli, Kurisu, Otsu and Whang (2020) who studies

distribution function instead of density function.

These deconvolution kernel density methods extend to methods for nonparametric

errors-in-variables regression. Fan and Truong (1993) and Fan and Masry (1992) study

Nadaraya-Watson estimator under known error distribution, followed by extensions by

Delaigle and Meister (2007), Delaigle, Fan and Carroll (2009) and Delaigle, Hall and

Jamshidi (2015). Delaigle, Hall and Meister (2008), Adusumilli and Otsu (2018) and

Kato and Sasaki (2019) consider cases of unknown error distribution with symmetrically

and identically distributed errors, while Li (2002), Schennach (2004), Schennach, White

and Chalak (2012), Schennach and Hu (2013) and Hu and Sasaki (2015) consider cases of

unknown error distribution with repeated measurements. Fan (1995) and Dong, Otsu and

Taylor (2021) study average derivatives of nonparametric errors-in-variables regression

under known error distribution and unknown symmetric error distribution, respectively.

The current paper is closely related to the last two references in that we are also interested

in
√
n-consistent estimation and inference for average derivatives for the purpose of the

aforementioned statistical inference about the hypothesis of buffer-stock saving. However,

unlike Fan (1995) or Dong, Otsu and Taylor (2021), we allow for the unknown error

distribution to be non-symmetric, in light of the recent empirical reports that components

of earnings and income have skewed distributions (e.g., Bonhomme and Robin, 2010;

Guvenen, Ozkan and Song, 2014; Hu, Moffitt and Sasaki, 2019; Guvenen, Karahan, Ozkan

and Song, 2021).

Despite the extensive econometric and statistical literature on deconvolution as sum-

marized in the prior two paragraphs, none of the existing papers to the best of our
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knowledge can conduct statistical inference for the MPCP under an unknown and possi-

bly asymmetric error distribution, even though the skewness has been reported to be very

likely by recent empirical studies on earnings and income dynamics. Motivated by the

aforementioned economic question concerning the MPCP, therefore, this paper fills this

important void in the deconvolution literature by proposing novel methods of estimation

and inference for average derivatives of latent regressors whose error distribution can be

both unknown and non-symmetric.

Regarding the application to the inference on buffer-stock saving motivated by Carroll

(2009), there are a couple of related existing papers. In particular, Blundell, Pistaferri and

Preston (2008) and Arellano, Blundell and Bonhomme (2017) investigate MPCP using

empirical data. Blundell, Pistaferri and Preston (2008) use a linear parametric consump-

tion model and conduct inference on the parameter that represents a constant MPCP.

In contrast, we use a nonparametric consumption model with a possibly non-constant

MPCP. Arellano, Blundell and Bonhomme (2017) use a nonlinear model of income dy-

namics, although their identification and estimation approach per se does not lead to sta-

tistical inference on MPCP. In contrast, at the cost of linear model of income dynamics,

our proposed approach allows for statistical inference on MPCP under a nonparametric

consumption model, and thus nonparametrically enables hypothesis testing about buffer-

stock saving. In this way, the novel method proposed in this paper complements the

existing literature on the empirical analysis of MPCP.

2 Methodology

2.1 Motivation and overview

Consider the permanent-transitory model of income dynamics

ιjt = πjt + τjt

πjt = πjt−1 + ηjt

where ιjt, πjt, τjt and ηjt denote observed log income, latent log permanent income, latent

log transitory income and latent permanent income shock, respectively, of individual j in
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year t. Under this setup,

ιjt − ιjt−2︸ ︷︷ ︸
=:Xj

= ηjt︸︷︷︸
=:X∗j

+ ηjt−1 + τjt − τjt−2︸ ︷︷ ︸
=:εj

and (2.1)

ιjt+1 − ιjt−1︸ ︷︷ ︸
=:Wj

= ηjt︸︷︷︸
=:X∗j

+ ηjt+1 + τjt+1 − τjt−1︸ ︷︷ ︸
=:νj

(2.2)

hold, where (Xj,Wj) is observed and (X∗j , εj, νj) is unobserved by a researcher. Although

not necessary, if we assume that the shocks, ηjt−1, ηjt, ηjt+1, τjt−2, τjt−1, τjt, and τjt+1,

are mutually independent, then the latent components X∗j , εj, and νj are also mutually

independent.1

Let Yj denote consumption growth Cjt−Cjt−1 from year t− 1 to year t. Consider the

nonparametric regression function g(·) = E[Yj|X∗j = ·]. The derivative g′ of this function

quantifies the MPCP introduced in Section 1. The theory of Carroll (2009) is that the

buffer-stock model that arises under inpatient consumers with a standard precautionary

saving motive implies g′ < 1 rather than g′ = 1. This testable implication leads to the

null and alternative hypotheses

H0 : θ1 ≥ 0 and H1 : θ1 < 0, (2.3)

where θ1 = E[{g′(X∗) − 1}f(X∗)] and f is the density of X∗. Rejection of H0 in favor

of H1 implies that there is at least some location x∗ in the support of X∗ such that

g′(x∗) < 1, thus providing statistical support for the theory of Carroll (2009).

As we formally present in Section 2.2 ahead, we propose to estimate θ1 by

θ̂1 = − 2

n2b3
n

n∑
j=1

n∑
k=1

(Yj −Wj)

ˆ
K̂
(
x−Xj

bn

)
K̂′
(
x−Xk

bn

)
dx, (2.4)

where K̂(u) = 1
2π

´
e−itu Kft(t)

f̂ ftε (t/bn)
dt, i =

√
−1, K ft is the Fourier transform of a kernel

function K, bn is a bandwidth parameter, and f̂ ft
ε (t) =

f̂ ftX(t)

f̂ ft(t)
with f̂ ft

X(t) = 1
n

∑n
j=1 e

itXj

and f̂ ft(t) = exp

(´ t
0

i
∑n
j=1Xje

isWj∑n
j=1 e

isWj
ds

)
. In Section 3, we further show that

√
n(θ̂1 − θ1)

1Even with more periods of data, if we wish errors like εj and νj to keep sharing no common component,

due to the structure of the permanent-transitory model of income dynamics, we can have no more than

two noisy measures of X∗
j . Hence, the repeated measurements setting here is fundamental.
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converges to a normal distribution, which facilitates statistical inference for θ1. Given the

estimator θ̂1 along with its estimated standard error, we may conduct a formal statistical

test of the implication (2.3) of the theory of Carroll (2009).

2.2 Average derivative estimator

To understand θ̂1 defined in (2.4) in a general framework, we consider the estimation of

θc = E[{g′(X∗)−c}f(X∗)] for a constant c. We set c = 1 for the test of (2.3), whereas one

can set c = 0 if inference for the average derivative is the objective per se. Suppose that

f is continuously differentiable and {g(x)− cx}f 2(x)→ 0 as |x| → ∞. By integration by

parts, θc can be expressed by

θc = −2E[(Y − cX∗)f ′(X∗)].

If X∗ were directly observed, θc could be estimated by θ̃c = − 2
n

∑n
j=1(Yj−cX∗j )f̃ ′(X∗j )

, where f̃(x) denotes the kernel density estimator of f(x), and θ̃c could be understood

as the density-weighted average derivative estimator by Powell, Stock and Stoker (1989)

with dependent variable Y − cX∗. In the case when X∗ is unobserved, however, θ̃c is

infeasible.

Motivated by (2.1)–(2.2), suppose that we can observe two noisy measurements of X∗,

denoted by X and W , which are generated by

X = X∗ + ε, W = X∗ + ν, (2.5)

where ε and ν are measurement errors associated with X and W , respectively. In partic-

ular, ε and ν have zero mean and are classical; that is, ε and ν are independent of X∗.2

To construct an estimator of θc in this case, note that

θc = −2E[(Y − cW )f ′(X∗)] = −2

ˆ
hc(x)f ′(x)dx, (2.6)

where hc(x) = {g(x) − cx}f(x). Let fA denote the density of a random variable A,

aft(t) =
´
eitxa(x)dx denote the Fourier transform of a function a, and {Yj, Xj,Wj}nj=1 be

2We will invoke a weaker assumption than the full statistical independence formally in Section 3.
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an i.i.d. sample of (Y,X,W ).

If fε were known, hc and f could be estimated using the deconvolution techniques by

ȟc(x) =
1

nbn

n∑
j=1

K
(
x−Xj

bn

)
(Yj − cWj),

f̌(x) =
1

nbn

n∑
j=1

K
(
x−Xj

bn

)
,

where K(u) = 1
2π

´
e−itu Kft(t)

f ftε (t/bn)
dt is the deconvolution kernel function based on the char-

acteristic function f ft
ε of the true measurement error ε. Hence, it would be natural to

estimate θc by the following plug-in estimator

θ̌c = −2

ˆ
ȟc(x)f̌ ′(x)dx

= − 2

n2b3
n

n∑
j=1

n∑
k=1

(Yj − cWj)

ˆ
K
(
x−Xj

bn

)
K′
(
x−Xk

bn

)
dx.

Now, suppose that fε is unknown. Assume that f ft, f ft
ε and f ft

ν do not vanish anywhere,

according to Kotlarski’s (1967) identity, f ft(t) = exp
(´ t

0
iE[XeisW ]
E[eisW ]

ds
)
, which together with

f ft
ε (t) = E[eitX ]

f ft(t)
implies that f̂ ft

ε defined in Section 2.1 is a plug-in estimator of f ft
ε based

on the sample analogs of E[eisX ] and E[eitW ], and E[XeisW ]. Therefore, to estimate θc

when fε is unknown, it is natural to replace f ft
ε in θ̌c by f̂ ft

ε , which gives

θ̂c = − 2

n2b3
n

n∑
j=1

n∑
k=1

(Yj − cWj)

ˆ
K̂
(
x−Xj

bn

)
K̂′
(
x−Xk

bn

)
dx,

where K̂(u) = 1
2π

´
e−itu Kft(t)

f̂ ftε (t/bn)
dt, defined in Section 2.1, is the deconvolution kernel func-

tion based on the estimated measurement error characteristic function f̂ ft
ε .

3 Main result

In this section, we presents a formal theory that provides the asymptotic validity of the

test procedure proposed in Section 2. Specifically, we derive the asymptotic distribution

for θ̂c and propose an estimator for its asymptotic variance. To this end, we make the

following assumptions.
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Assumption.

(1) {Yj, Xj,Wj}nj=1 is an i.i.d. sample of (Y,X,W ), where (X,W ) satisfies (2.5), E[|X∗|2+η] <

∞ for some η > 0, and E[Y 2] <∞. Measurement errors (ε, ν) are independent from

X∗ and satisfy E[Y |X∗, ε] = E[Y |X∗], E[ε|ν] = 0, E[ν|ε] = 0, E[|ε|2+η] < ∞, and

E[|ν|2+η] <∞. Characteristic functions f ft, f ft
ε and f ft

ν do not vanish anywhere.

(2) hc and f have α continuous, bounded and integrable derivatives, and satisfy

|f (α)(x+ ∆x)− f (α)(x)| < m(x)|∆x|, |h(α)
c (x+ ∆x)− h(α)

c (x)| < m(x)|∆x|

for some bounded and integrable function m(x) with E[|m(X)|2(1+|Y −cW |)2] <∞.

(3) K is symmetric, differentiable, and
´
K(u)du = 1,

´
ulK(u)du = 0 for 1 ≤ l < α,

and
´
uαK(u)du 6= 0. Also K ft is compactly supported on [−1, 1] and bounded.

(4)
n−1/2b−2

n log(1/bn)2{inf|t|≤b−1
n
|f ftε (t)|}−2{inf|t|≤b−1

n
|f ft(t)|}−2

min
{
{inf|t|≤b−1

n
|f ftε (t)|}2,{inf|t|≤b−1

n
|f ftν (t)|}4{inf|t|≤b−1

n
|f ft(t)|}2b2n

} → 0 and n1/2bαn → 0 as n→∞.

(5) V ar[ξc(Y,X,W )] <∞ where

ξc(y, x, w) =
1

π

ˆ


{{h′c}ft(−t)− (y − cw){f ′}ft(−t)} eitx

f ftε (t)

+

 {f ft(t){h′c}ft(−t)− {f ′}ft(−t)hft
c (t)}

×
{
− eitx

f ft(t)f ftε (t)
+
´ t

0

(
−{f

ft}′(s)
f ft(s)

+ ix
)

eisw

f ft(s)f ftν (s)
ds
}


 dt.

Assumption (1) requires random sampling and imposes conditions on the distribution

of (Y,X∗) and measurement errors (ε, ν). In particular, under the classical measurement

error assumptions, E[Y |X∗, ε] = E[Y |X∗] and E[ν|ε] = E[ν] are imposed for the identifi-

cation of E[Y − cW |X∗]3, E[ν] = 0 is imposed for θc = −2E[(Y − cW )f ′(X∗)], and the
3The full independence between the measurement error in regressor and dependent variable has been

commonly adopted in the literature of nonparametric regression with errors-in-variables, (e.g., Fan and

Truong, 1993; Delaigle and Meister, 2007; Meister, 2009). In our setting, however, it is sufficient to

require the mean independence. In particular, observe that the identification of E[Y − cW |X∗] hinges on

{E[Y − cW |X]fX}(x) =
ˆ
{E[Y − cW |X∗]f}(x− e)fε(e)de,

which holds if E[Y−cW |X∗, ε] = E[Y−cW |X∗], or equivalently E[Y |X∗, ε] = E[Y |X∗] and E[ν|ε] = E[ν],

under the classical measurement error assumption.
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non-vanishing characteristic functions and E[ε|ν] = 0 is imposed for the Kotlarski’s iden-

tity4. E[|X∗|2+η] <∞ and E[|ε|2+η] <∞ are regularity conditions required by Lemma 1,

which is used to characterize the uniform convergence rate of the empirical characteristic

function of (X,W ) and their first-order derivatives over an expanding region. We remark

in the context of (2.1)–(2.2) that our conditions, E[ε|ν] = 0 and E[ν|ε] = 0, do not rule

out the typical assumptions about the permanent-transitory models of income and earn-

ings dynamics in which the permanent shocks {ηjt}t and the transitory components {τjt}t
are white noise processes (e.g., Bonhomme and Robin, 2010).

Assumption (2) constitutes mild assumptions on the smoothness of the density func-

tion f and the regression function g, which is equivalent to Assumptions 3 and 5 in Powell,

Stock and Stoker (1989). Assumption (3) concerns the kernel function K. Specifically,

we require K to be a symmetric α-th order kernel, which together with Assumption (2)

can be used to control the magnitude of the estimation bias. In addition, we also require

K ft to be compactly supported, which is to regularize the deconvolution problem that is

well-known to be ill-posed.

Assumption (4) gives two conditions on the bandwidth bn. In particular, the first

condition is needed to control the estimation variance, and the second condition requires

g and f to be smooth enough so that the estimation bias is asymptotically negligible.

Here, we maintain a general expression without specifying the decay rates of the tails of

f ft, f ft
ε and f ft

ν as is typical in the deconvolution literature. By doing so, we can apply our

result to a larger set of measurement error distributions, including both ordinary smooth

distributions and supersmooth distributions. Assumption (5) is a high-level assumption

on the boundedness of the asymptotic variance of θ̂c; an analogous assumption is made

in Fan (1995) and Dong, Otsu and Taylor (2021).

Theorem. Under Assumptions (1) - (5), we have

√
n{θ̂c − θc}

d→ N(0, V ar[ξc(Y,X,W )]).

This is the main result of the paper. To understand it, we can decompose ξc into two
4The full independence between ε and ν has been commonly adopted in the literature on identification

and estimation based on Kotlarski’s identity (e.g., Li and Vuong, 1998; Kato, Sasaki and Ura, 2021; Dong,

Otsu and Taylor, 2022), but it can be relaxed to the mean independence; See Schennach(2004).
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parts as ξc(Y,X,W ) = ξc,1(Y,X,W ) + ξc,2(Y,X,W ), where

ξc,1(Y,X,W ) =
1

π

ˆ {
{h′c}ft(−t)− (Y − cW ){f ′}ft(−t)

} eitX

f ft
ε (t)

dt,

ξc,2(Y,X,W ) =
1

π

ˆ  {{h′c}ft(−t)f ft(t)− hft
c (t){f ′}ft(−t)}

×
{
− eitX

f ft(t)f ftε (t)
+
´ t

0

(
−{f

ft}′(s)
f ft(s)

+ iX
)

eisW

f ft(s)f ftν (s)
ds
}
 dt,

and consider, for ease of illustration, a special case in which f ft
ε is of the form

f ft
ε (t) =

1

c0 + c1t+ · · ·+ cβtβ
,

where β is a positive integer, and c0 = 1, c1, . . . , cβ are complex numbers, which includes

the Laplace distribution as a special case when c1 = 0 and β = 2.

In such cases, using {a(k)}ft(t) = (−it)kaft(t) for a positive integer k, we obtain that

ξc,1(Y,X,W ) =
1

π

ˆ {
{h′c}ft(−t)− (Y − cW ){f ′}ft(−t)

}{
c0 + c1t+ · · ·+ cβt

β
}
eitXdt

=

β∑
k=0

ck
πik

ˆ (it)k+1hft
c (−t)︸ ︷︷ ︸

{h(k+1)
c }ft(−t)

−(Y − cW ) (it)k{f ′}ft(−t)︸ ︷︷ ︸
{f (k+1)}ft(−t)

 eitXdt

=

β∑
k=0

(−i)k2ck
{

(Y − cW )f (k+1)(X)− h(k+1)
c (X)

}
,

which when c = 0 coincides with 2r(X, Y ) defined as in equation (25) of Fan (1995). Thus,

ξc,1(Y,X,W ) characterizes the randomness of θ̌c, which is the estimator of θc when fε is

known. Furthermore, compared to 2r(X, Y ) in Fan (1995), ξc,1(Y,X,W ) allows non-zero

value of c and can cover a larger set of measurement error distributions.

Since ξc,1(Y,X,W ) characterizes the randomness in the estimation of θc when fε is

known, the additional randomness introduced by using f̂ ft
ε in the place of f ft

ε is reflected

by ξc,2(Y,X,W ). It is worthy to note that the structure of ξc,2(Y,X,W ) is similar to that

of ξc,1(Y,X,W ), but is more complicated. In general, it is difficult to simplify ξc,2(Y,X,W )

as we did for ξc,1(Y,X,W ) even when f ft, f ft
ε and f ft

ν are all specified. However, there are

special cases in which ξc,2(Y,X,W ) can be completely ignored. To see a case in point, note

that {h′c}ft(−t)f ft(t) − hft
c (t){f ′}ft(−t) = it{hft

c (−t)f ft(t) − hft
c (t)f ft(−t)}, which implies

that if hft
c (−t) = hft

c (t) and f ft(−t) = f ft(t), for example when both hc and f are symmetric
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around zero, ξc,2(Y,X,W ) = 0, i.e. the estimation error brought by using f̂ ft
ε in the place

of f ft
ε is exactly zero and θ̂c has exactly the same asymptotic distribution as that of θ̌c.

To test hypotheses on θc like H0, besides the asymptotic distribution of θ̂c, we also

need to estimate s2
c = V ar[ξc(Y,X,W )]. Observe that we can rewrite

ξc(y, x, w) =
1

π

ˆ
it


{hft

c (−t)− (y − cw)f ft(−t)} eitx

f ftε (t)

+

 {f ft(t)hft
c (−t)− f ft(−t)hft

c (t)}

×
{
− eitx

f ft(t)f ftε (t)
+
´ t

0

(
−{f

ft}′(s)
f ft(s)

+ ix
)

eisw

f ft(s)f ftν (s)
ds
}


 dt

=
1

π

ˆ
it


{hft

c (−t)− (y − cw)f ft(−t)} eitx

f ftε (t)

+

 {f ft(t)hft
c (−t)− f ft(−t)hft

c (t)}

×
{
− eitx

f ftX(t)
+
´ t

0

(
− iE[XeisW ]

f ftW (s)
+ ix

)
eisw

f ftW (s)
ds
}


 dt,

where the first step uses {a(k)}ft(t) = (−it)kaft(t) and the second step follows from f ft
X =

f ftf ft
ε , f ft

W = f ftf ft
ν and f ft(t) = exp

(´ t
0

iE[XeisW ]
E[eisW ]

ds
)
, which implies E[ξc(Y,X,W )] = 0

and s2
c = E[ξ2

c (Y,X,W )]. In practice,f ft, f ft
ε , f ft

X , f ft
W , E[XeitW ] and hft

c are all unknown,

and we have to estimate them. f ft, f ft
ε and f ft

X can be estimated by f̂ ft, f̂ ft
ε , and f ft

X defined

in Section 2, f ft
W can be estimated by f̂ ft

W (t) = 1
n

∑n
j=1 e

itWj , E[XeitW ] can be estimated

by Ê[XeitW ] = 1
n

∑n
j=1Xje

isWj , and hft
c can be estimated by ĥft

c (t) =
1
n

∑n
j=1(Yj−cWj)e

itXj

f̂ ftε (t)
.

Therefore, we can estimate s2
c by ŝ2

c = 1
n

∑n
j=1 ξ̂

2
c (Yj, Xj,Wj) with

ξ̂c(y, x, w) =
1

π

ˆ
it


{ĥft

c (−t)− (y − cw)f̂ ft(−t)} eitx

f̂ ftε (t)

+

 {f̂ ft(t)ĥft
c (−t)− f̂ ft(−t)ĥft

c (t)}

×
{
− eitx

f̂ ftX(t)
+
´ t

0

(
− iÊ[XeisW ]

f̂ ftW (s)
+ ix

)
eisw

f̂ ftW (s)
ds
}


K ft(tbn)dt,

where K ft(tbn) is introduced to regularize the integration.

4 Simulation

This section presents simulation studies to analyze the finite sample performance of the

proposed method of inference about θc. We generate N independent copies of the observed

10



variables (Y,X, U) via the structural equations

Y = f(X∗) + U = X∗ − δX∗ + U,

X = X∗ + ε, and

W = X∗ + ν,

where the latent variables (X∗, U, ε, ν) are in turn generated independently from the stan-

dard normal distribution. Note in this setting that the null hypothesis H0 : θ1 ≥ 0 is

true if and only if δ ≤ 0. Furthermore, positive values of the design parameter δ in this

data generating process measures deviations from the null hypothesis. We run sets of

simulations across combinations of the values of δ ∈ [0.0, 0.5] and N ∈ {250, 500}, where

each set of simulations consists of 2,500 Monte Carlo iterations.

[FIGURE 1 HERE]

Figure 1 plots the Monte Carlo frequencies of rejecting the null hypothesis H0 : θ1 ≥ 0

against the alternative H1 : θ1 < 0 based on the one-sided test with our estimator θ̂1 and

its standard error estimator ŝ1. The nominal size of the test is set to 0.05. The horizontal

axis of the figure measures the deviation δ ∈ [0.0, 0.5] away from the null hypothesis H0.

The dashed (respectively, solid) curve indicates the results with N = 250 (respectively,

500). Observe that the rejection frequency at δ = 0 is close to the nominal size, 0.05. As

δ becomes larger, on the other hand, the rejection frequencies increase. For a given value

of δ > 0, the rejection frequency is larger for the larger sample size, demonstrating the

power of the test as well as the size control.

We ran additional simulations with alternative data generating designs, only to find

very similar simulation results to the baseline results presented above. Overall, the sim-

ulation outcomes demonstrate excellent small-sample performance of the estimation and

inference methods. Our observations that the asymptotic approximations are already

accurate even at such small sample sizes N as 250 demonstrate the practical merit of

our root-n consistent test under the highly sophisticated problem of errors-in-variables

nonparametric regressions.
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5 Application

This section revisits the analysis of the MPCP introduced in Sections 1–2. Recall from

(2.1) and (2.2) that we require four time periods of panel data
{
{ιjτ}t+1

τ=t−2

}n
j=1

on observed

income to construct the variables {(Xj,Wj)}nj=1 that we use as inputs for our proposed

method of inference. Using the U.S. Panel Study of Income Dynamics (PSID) for the four

most recent survey years 2013, 2015, 2017, and 2019, we aim to test the null hypothesis

H0 : θ1 ≥ 0 of (super-) unit MPCP against the alternative hypothesis H1 : θ1 < 0 of

sub-unit MPCP. Rejecting the null hypothesis H0 supports the buffer-stock model that

arises with inpatient consumers having a standard precautionary saving motive.

The income variable ιjt is defined by the log total family income of unit j reported in

year t. The consumption variable Cjt is similarly defined by the log family expenditures

of unit j reported in year t, where the categories of consumption consist of food, housing,

telephone/internet, transportation, vehicle, education, child care, health care, household

repairs, household furnishing, clothing, and recreation. The first three columns of Table

1 display summary statistics of this data set. Displayed values are the sample means.

Parentheses enclose sample standard deviations.

[TABLE 1 HERE]

Adapting (2.1) and (2.2) to this panel data set, we construct Xj = ιj2017 − ιj2013 and

Wj = ιj2019 − ιj2015. Likewise, we construct the outcome variable by Yj = Cj2017 −Cj2015.

We drop units that experience a missing value or an infinite value for Xj, Wj or Yj. Con-

sequently, we obtain a balanced panel of 5976 household units. The last three columns of

Table 1 display summary statistics of the constructed variables {(Xj,Wj, Yj)}nj=1. Again,

displayed values are the sample means, and parentheses enclose sample standard devia-

tions.

Applying our proposed method of estimation and inference, we obtain the point es-

timate of θ̂1 = −0.0607 with the estimated standard error of ŝ1 = 0.0052. Using our

asymptotic normality results along with these estimates, we formally reject the one-sided

test of the null hypothesis H0 : θ1 ≥ 0 of (super-) unit MPCP in favor of the alterna-

tive hypothesis H1 : θ1 < 0 of sub-unit MPCP. Our test result supports the buffer-stock

model that arises with inpatient consumers having a standard precautionary saving mo-

12



tive. Even though a number of prior studies have calibrated or estimated the MPCP under

various models of income dynamics, to our best knowledge, our result is the first formal

statistical inference result about the MPCP using flexible nonparametric distribution in

the permanent-transitory model of income processes.

6 Conclusion

In this paper, we propose a density-weighted average derivative estimator when two noisy

measures of a latent regressor is available. Both measures have classical errors, and the

error distributions are possibly asymmetric. We show that this estimator achieves the

root-n rate of convergence and is asymptotically normal. Simulation studies demonstrate

excellent small-sample performance, and support the merit of the root-n asymptotic nor-

mality. Based on the proposed estimator, we construct a test on the sub-unity of MPCP

under a nonparametric consumption model. In particular, under a permanent-transitory

model of income dynamics, we construct two noisy measures of a permanent income shock

using four periods data. With an application using recent waves of the U.S. PSID, we

reject the null hypothesis of unit MPCP in favor or a sub-unit MPCP, supporting the

buffer-stock model of saving.
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A Proof of the theorem

Let µ̂ι(t) = 1
n

∑n
l=1 µι,l(t) and µι(t) = E[µι,1(t)] for ι = 1, 2, 3 with µ1,l(t) = eitXl ,

µ2,l(t) = eitWl , and µ3,l(t) = Xle
itWl . Then, f̂ ft

ε (t) = µ̂1(t) exp
(
−
´ t

0
iµ̂3(s)
µ̂2(s)

ds
)
and fε(t) =

µ1(t) exp
(
−
´ t

0
iµ3(s)
µ2(s)

ds
)
. By expanding (µ̂1, µ̂2, µ̂3) around (µ1, µ2, µ3), we obtain

K̂(u) = K(u) + A(u) + R(u), (A.1)

where A(u) = 1
2π

´
e−itu Kft(t)

f ftε (t/bn)
Π̂(t/bn)dt and R(u) = 1

2π

´
e−itu Kft(t)

f ftε (t/bn)
Π̂res(t/bn)dt with

Π̂(t) =
1

n

n∑
l=1

Πl(t), Πl(t) = −δ1,l(t)

µ1(t)
+ i

ˆ t

0

{
−µ3(s)δ2,l(s)

µ2
2(s)

+
δ3,l(s)

µ2(s)

}
ds,

Π̂res(t) =
δ̂2

1(t)

µ1(t) + δ̂1(t)
−
ˆ t

0

i

{
−µ3(s)δ̂2(s)

µ2
2(s)

+
δ̂3(s)

µ2(s)

}
δ̂2(s)

µ2(s) + δ̂2(s)
ds

+

ˆ t

0

i

{
−µ3(s)δ̂2(s)

µ2
2(s)

+
δ̂3(s)

µ2(s)

}{
1− δ̂2(s)

µ2(s) + δ̂2(s)

}
ds

{
− δ̂1(t)

µ1(t)
+

δ̂2
1(t)

µ1(t) + δ̂1(t)

}

−1

2
eφ̄(t)

(ˆ t

0

{
−µ3(s)δ̂2(s)

µ2
2(s)

+
δ̂3(s)

µ2(s)

}{
1− δ̂2(s)

µ2(s) + δ̂2(s)

}
ds

)2{
1− δ̂1(t)

µ1(t)
+

δ̂2
1(t)

µ1(t) + δ̂1(t)

}
,

for some |φ̄(t)| ≤
∣∣∣´ t0 {−µ3(s)δ̂2(s)

µ22(s)
+ δ̂3(s)

µ2(s)

}{
1− δ̂2(s)

µ2(s)+δ̂2(s)

}
ds
∣∣∣, where δ̂ι(t) = 1

n

∑n
l=1 δι,l(t)

with δι,l(t) = µι,l(t)− µι(t) for ι = 1, 2, 3. Here, A denotes the Fréchet derivative of K̂ as

a functional of (µ̂1, µ̂2, µ̂3) evaluated at (µ1, µ2, µ3) in the direction of (δ̂1, δ̂2, δ̂3), and R

contains the remainders. Observe that (A.1) implies

θ̂c =
2

n2

n∑
j=1

n∑
k=1

(−1)b−3
n (Yj − cWj)

ˆ
K̂
(
x−Xj

bn

)
K̂′
(
x−Xk

bn

)
dx

=
2

n2

n∑
j=1

n∑
k=1

(−1)b−3
n (Yj − cWj)

ˆ  K
(
x−Xj
bn

)
K′
(
x−Xk
bn

)
+A

(
x−Xj
bn

)
K′
(
x−Xk
bn

)
+ K

(
x−Xj
bn

)
A′
(
x−Xk
bn

)
 dx

︸ ︷︷ ︸
=:S

+
2

n2

n∑
j=1

n∑
k=1

(−1)b−3
n (Yj − cWj)

ˆ



A
(
x−Xj
bn

)
A′
(
x−Xk
bn

)
+R

(
x−Xj
bn

)
K′
(
x−Xk
bn

)
+ K

(
x−Xj
bn

)
R′
(
x−Xk
bn

)
+R

(
x−Xj
bn

)
A′
(
x−Xk
bn

)
+ A

(
x−Xj
bn

)
R′
(
x−Xk
bn

)
+R

(
x−Xj
bn

)
R′
(
x−Xk
bn

)


dx

︸ ︷︷ ︸
=:T
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First, we are going to show

T = op(n
−1/2). (A.2)

To show (A.2), decompose T = T1 + T2 + T3 + T4, where

T1 =
−2

n2b3
n

n∑
j=1

n∑
k=1

(Yj − cWj)

ˆ
A
(
x−Xj

bn

)
A′
(
x−Xk

bn

)
dx,

T2 =
−2

n2b3
n

n∑
j=1

n∑
k=1

(Yj − cWj)

ˆ {
R
(
x−Xj

bn

)
K′
(
x−Xk

bn

)
+ K

(
x−Xj

bn

)
R′
(
x−Xk

bn

)}
dx,

T3 =
−2

n2b3
n

n∑
j=1

n∑
k=1

(Yj − cWj)

ˆ {
R
(
x−Xj

bn

)
A′
(
x−Xk

bn

)
+ A

(
x−Xj

bn

)
R′
(
x−Xk

bn

)}
dx,

T4 =
−2

n2b3
n

n∑
j=1

n∑
k=1

(Yj − cWj)

ˆ
R
(
x−Xj

bn

)
R′
(
x−Xk

bn

)
dx.

For T1, we have

|T1| =
1

πn2b3
n

∣∣∣∣∣∣∣
n∑
j=1

n∑
k=1

(Yk − cWk)

¨ 
1

2π

´
e−i(t1+t2)x/bndx t1e

i
(
t1Xj+t2Xk

bn

)

× Kft(t1)Kft(t2)
f ftε (t1/bn)f ftε (t2/bn)

Π̂(t1/bn)Π̂(t2/bn)

 dt1dt2

∣∣∣∣∣∣∣
=

1

πn2b2
n

∣∣∣∣∣∣∣
n∑
j=1

n∑
k=1

(Yk − cWk)

¨ 
1

2π

´
e−i(t1+t2)x̃dx̃ t1e

i
(
t1Xj+t2Xk

bn

)

× Kft(t1)Kft(t2)
f ftε (t1/bn)f ftε (t2/bn)

Π̂(t1/bn)Π̂(t2/bn)

 dt1dt2

∣∣∣∣∣∣∣
=

1

πn2b2
n

∣∣∣∣∣
n∑
j=1

n∑
k=1

(Yk − cWk)

ˆ
te

it
(
Xj−Xk
bn

) |K ft(t)|2

|f ft
ε (t/bn)|2

|Π̂(t/bn)|2dt

∣∣∣∣∣
= Op

(
{sup|t|≤b−1

n
|Π̂(t)|}2

b2
n{inf |t|≤b−1

n
|f ft
ε (t)|}2

)
,

where the second step follows from the change of variables x̃ = x/bn, the third step follows

by
´
δ(t− s)f(t)dt = f(s) with Dirac delta function δ(t) = 1

2π

´
e−itxdx, and the last step

uses the implication that K ft is supported on [−1, 1] under Assumption (3). Similar

arguments show

|T2| = Op

(
sup|t|≤b−1

n
|Π̂res(t)|

b2
n{inf |t|≤b−1

n
|f ft
ε (t)|}2

)
,

|T3| = Op

(
sup|t|≤b−1

n
|Π̂(t)| sup|t|≤b−1

n
|Π̂res(t)|

b2
n{inf |t|≤b−1

n
|f ft
ε (t)|}2

)
,

|T4| = Op

(
{sup|t|≤b−1

n
|Π̂res(t)|}2

b2
n{inf |t|≤b−1

n
|f ft
ε (t)|}2

)
,
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and thus (A.2) follows by Lemma 2 and Assumption (4).

Hence, for the asymptotic distribution of θ̂c, it is sufficient to focus on S. Let aj =

(Yj, Xj,Wj) and let Sym(I) denote the collection of all permutations of an ordered set I.

Observe that

S =
2

n2

n∑
j=1

n∑
k=1

(−1)b−3
n (Yj −Wj)

ˆ  K
(
x−Xj
bn

)
K′
(
x−Xk
bn

)
+A

(
x−Xj
bn

)
K′
(
x−Xk
bn

)
+ K

(
x−Xj
bn

)
A′
(
x−Xk
bn

)
 dx

=
2

n3

n∑
j=1

n∑
k=1

n∑
l=1

(−1)b−3
n (Yj −Wj)

ˆ


K
(
x−Xj
bn

)
K′
(
x−Xk
bn

)
+

{
1

2π

´
e
−it
(
x−Xj
bn

)
Kft(t)
f ftε (t/bn)

Πl(t/bn)dt

}
K′
(
x−Xk
bn

)
+K

(
x−Xj
bn

){
−i
2π

´
te
−it
(
x−Xk
bn

)
Kft(t)
f ftε (t/bn)

Πl(t/bn)dt

}

dx

︸ ︷︷ ︸
=:qn(aj ,ak,al)

=
(n− 1)(n− 2)

n2

(
n

3

)−1 n−2∑
j=1

n−1∑
k=j+1

n∑
l=k+1

=:pn(aj ,ak,al)︷ ︸︸ ︷∑
(j′,k′,l′)∈Sym((j,k,l))

qn(aj, ak, al)/3−E[pn(aj, ak, al)]︸ ︷︷ ︸
=:Un

+
(n− 1)(n− 2)

n2
E[pn(a1, a2, a3)]︸ ︷︷ ︸

=:Bn

+
2

n3


n−1∑
j=1

n∑
k=j+1


qn(aj, aj, ak) + qn(ak, ak, aj)

+qn(aj, ak, aj) + qn(ak, aj, ak)

+qn(aj, ak, ak) + qn(ak, aj, aj)

+
n∑
j=1

qn(aj, aj, aj)

︸ ︷︷ ︸
=:Rn

,

where Un is a 3rd order U-statistic with symmetric kernel pn, and its Hájek projection is

given by

U∗n =
3

n

n∑
j=1

{rn(aj)− E[rn(aj)]},

where rn(aj) = Ej[pn(aj, ak, al)] and Ej[·] = E[·|aj]. Then, we can write

S − θc = U∗n(1− 1/n)(1− 2/n) + {Un −U∗n}(1− 1/n)(1− 2/n) + {Bn − θc}+Rn. (A.3)

First, we are going to show

Rn = op(n
−1/2). (A.4)
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To show (A.4), decompose Rn = Rn,1 +Rn,2 +Rn,3, where

Rn,1 =
2

n3

n−1∑
j=1

n∑
k=j+1

{qn(aj, aj, ak) + qn(ak, ak, aj) + qn(aj, ak, ak) + qn(ak, aj, aj)}

Rn,2 =
2

n3

n−1∑
j=1

n∑
k=j+1

{qn(aj, ak, aj) + qn(ak, aj, ak)},

Rn,3 =
2

n3

n∑
j=1

qn(aj, aj, aj).

Observe that

qn(dj, dk, dl) =
i(Yj − cWj)

2πb3
n

¨ 
{

1
2π

´
e−i(t1+t2)x/bndx

}
t2e

i
(
t1Xj+t2Xk

bn

)

× Kft(t1)Kft(t2)
f ftε (t1/bn)f ftε (t2/bn)

{1 + Πl(t1/bn) + Πl(t2/bn)}

 dt1dt2

=
i(Yj − cWj)

2πb2
n

¨ 
{

1
2π

´
e−i(t1+t2)x̃dx̃

}
t2e

i
(
t1Xj+t2Xk

bn

)

× Kft(t1)Kft(t2)
f ftε (t1/bn)f ftε (t2/bn)

{1 + Πl(t1/bn) + Πl(t2/bn)}

 dt1dt2

=
i(cWj − Yj)

2πb2
n

ˆ
te

it
(
Xj−Xk
bn

) |K ft(t)|2

|f ft
ε (t/bn)|2

{1 + Πl(t/bn) + Πl(−t/bn)} dt,

where the third step follows from the change of variable x̃ = x/bn and the last step follows

from the property of Dirac delta function. Using the fact that K ft is supported on [−1, 1]

under Assumption (3), this implies

E[|Rn,1|] ≤
2(n− 1)

n2
{E[|qn(a1, a1, a2)|] + E[|qn(a1, a2, a2)|]} = O

(
max{1, sup|t|≤b−1

n
E[|Π1(t)|]}

nb2
n{inf |t|≤b−1

n
|f ft
ε (t)|}2

)
,

E[|Rn,2|] ≤
2(n− 1)

n2
E[|qn(a1, a2, a1)|] = O

(
max{1, sup|t|≤b−1

n
E[|(Y1 − cW1)Π1(t)|]}

nb2
n{inf |t|≤b−1

n
|f ft
ε (t)|}2

)
,

E[|Rn,3|] ≤
2

n2
E[|qn(a1, a1, a1)|] = O

(
max{1, sup|t|≤b−1

n
E[|(Y1 − cW1)Π1(t)|]}

n2b2
n{inf |t|≤b−1

n
|f ft
ε (t)|}2

)
,

and (A.4) follows by Lemma 3 and Assumption (4).

Second, under Assumption (4), we have

Bn − θc = o(n−1/2), (A.5)
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which follows from

E[pn(a1, a2, a3)] = 2E[qn(a1, a2, a3)]

=− 2

b3
n

ˆ
E

[
(Y − cW )K

(
x−X
bn

)]
E

[
K′
(
x−X
bn

)]
dx

=− 2

ˆ {
1

bn
E

[
(Y − cW )K

(
x−X∗

bn

)]}{
1

b2
n

E

[
K ′
(
x−X∗

bn

)]}
dx

=−2

ˆ
hc(x)f ′(x)dx︸ ︷︷ ︸

θc

−2

ˆ



h(x) bα−1
n

(α−1)!

´
K(u){

≤m(x)bn|u|︷ ︸︸ ︷
f (α)(x+ bnūf )− f (α)(x)}uα−1du

+f ′(x) b
α
n

α!

´
K(u){h(α)

c (x+ bnūh)− h(α)
c (x)︸ ︷︷ ︸

≤m(x)bn|u|

}uαdu

+


bα−1
n

(α−1)!

´
K(u){f (α)(x+ bnūf )− f (α)(x)}uα−1du

× bαn
α!

´
K(u){h(α)

c (x+ bnūh)− h(α)
c (x)}uαdu




dx

=θc +O(bαn)

for some ūh and ūf such that max{|ūh|, |ūf |} ≤ |u|, where the second step follows from

E[Πl(t/bn)] = 0, the third step follows from Lemma 4, the fourth step follows from

Lemma 5, and the last step follows from the Lipschitz conditions on h(α)
c and f (α) under

Assumption (2).

Also, note by Lemma A.3 of Ahn and Powell (1993) that

Un − U∗n = op(n
−1/2) (A.6)

if E[|pn(aj, ak, al)|2] = o(n), which follows from Assumption (4), Lemma 3, and

E[|pn(aj, ak, al)|2] ≤ 4E[|qn(aj, ak, al)|2]

=4E

[∣∣∣∣ i(cWj − Yj)
2πb2

n

ˆ
te

it
(
Xj−Xk
bn

) |K ft(t)|2

|f ft
ε (t/bn)|2

{1 + Πl(t/bn) + Πl(−t/bn)} dt
∣∣∣∣2
]

≤E[|Yj − cWj|2]

b4
n

¨


|t1t2| |Kft(t1)|2|Kft(t2)|2
|f ftε (t1/bn)|2|f ftε (t2/bn)|2

×E

 {1 + |Πl(t1/bn)|+ |Πl(−t1/bn)|}

× {1 + |Πl(t2/bn)|+ |Πl(−t2/bn)|}


 dt1dt2

=O

(
max{1, sup|t|≤b−1

n
E[|Π1(t)|2]}

b4
n{inf |t|≤b−1

n
|f ft
ε (t)|}4

)
,
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where the second step follows by k 6= l and the last step follows by the fact that K ft is

supported on [−1, 1] as in Assumption (3) and the Cauchy-Schwarz inequality.

Finally, observe that

3rn(aj) = Ej


qn(aj, ak, al) + qn(aj, al, ak)

+qn(ak, aj, al) + qn(al, aj, ak)

+qn(ak, al, aj) + qn(al, ak, aj)

 = 2


Ej[qn(aj, ak, al)]

+Ej[qn(ak, aj, al)]

+Ej[qn(ak, al, aj)]


= (−2)b−3

n

ˆ


E
[
(Y − cW )K

(
x−X
bn

)]
E
[
K′
(
x−X
bn

)]
−
{

1
2π

´
e−itx/bnhft

c (t/bn)E[Π∗j(t/bn)]K ft(t)dt
}
E
[
K′
(
x−X
bn

)]
−E

[
(Y − cW )K

(
x−X
bn

)]{−i
2π

´
te−itx/bnf ft(t/bn)E[Π∗j(t/bn)]K ft(t)dt

}
 dx

︸ ︷︷ ︸
=:cr

+ (−2)b−3
n

ˆ


(Yj − cWj)K
(
x−Xj
bn

)
E
[
K′
(
x−X
bn

)]
+ E

[
(Y − cW )K

(
x−X
bn

)]
K′
(
x−Xj
bn

)
+
{

1
2π

´
e−itx/bnhft

c (t/bn)Π∗j(t/bn)K ft(t)dt
}
E
[
K′
(
x−X
bn

)]
+E

[
(Y − cW )K

(
x−X
bn

)]{−i
2π

´
te−itx/bnf ft(t/bn)Π∗j(t/bn)K ft(t)dt

}
 dx

︸ ︷︷ ︸
=:r∗n(aj)

,

where the last step follows from Πj(t/bn) = Π∗j(t) − E[Π∗j(t)] (so E[Πj(t/bn)] = 0) with

Π∗j(t) = −µ1,j(t)

µ1(t)
+ i
´ t

0

{
−µ3(s)µ2,j(s)

µ22(s)
+

µ3,j(s)

µ2(s)

}
ds.

Since cr is non-stochastic, to characterize the behavior of U∗n, it is sufficient to focus

on r∗n(aj), for which we have

r∗n(aj) = 2b−3
n

ˆ



´
K
(
x−Xj
bn

)
E
[
(Y − cW )K′

(
x−X
bn

)]
−(Yj − cWj)K

(
x−Xj
bn

)
E
[
K′
(
x−X
bn

)]
−
{

1
2π

´
e−itx/bnf ft(t/bn)Π∗j(t/bn)K ft(t)dt

}
E
[
(Y − cW )K′

(
x−X
bn

)]
+
{

1
2π

´
e−itx/bnhft

c (t/bn)Π∗j(t/bn)K ft(t)dt
}
E
[
K′
(
x−X
bn

)]


dx

=2b−1
n

ˆ



´
K
(
x−Xj
bn

){
b−2
n E

[
(Y − cW )K′

(
x−X
bn

)]}
−(Yj − cWj)K

(
x−Xj
bn

){
b−2
n E

[
K′
(
x−X
bn

)]}
−
{

1
2π

´
e−itx/bnf ft(t/bn)Π∗j(t/bn)K ft(t)dt

}{
b−2
n E

[
(Y − cW )K′

(
x−X
bn

)]}
+
{

1
2π

´
e−itx/bnhft

c (t/bn)Π∗j(t/bn)K ft(t)dt
}{

b−2
n E

[
K′
(
x−X
bn

)]}


dx

=
1

π

ˆ 
´ {
{h′c}ft(−t)− (Yj − cWj){f ′}ft(−t)

}
eitXj

f ftε (t)

+
{
f ft(t){h′c}ft(−t)− {f ′}ft(−t)hft

c (t)
}

Π∗j(t)

 dt+ vn,1(aj) + vn,2(aj),
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where the first step uses the integration by parts and vn,1(aj) and vn,2(aj) are defined as

vn,1(aj) = 2b−1
n

ˆ




1

2π

´
e−itx/bn

[
eitXj/bn

f ftε (t/bn)
+ f ft(t/bn)Π∗j(t/bn)

]
K ft(t)dt

×
{
b−2
n E

[
(Y − cW )K′

(
x−X
bn

)]
− h′c(x)

}


−


1

2π

´
e−itx/bn

[
(Yj−cWj)e

itXj/bn

f ftε (t/bn)
+ hft

c (t/bn)Π∗j(t/bn)
]
K ft(t)dt

×
{
b−2
n E

[
K′
(
x−X
bn

)]
− f ′(x)

}



dx,

vn,2(aj) =
1

π

ˆ 
´ {
{h′c}ft(−t)− (Yj − cWj){f ′}ft(−t)

}
eitXj

f ftε (t)

+
{
f ft(t){h′c}ft(−t)− {f ′}ft(−t)hft

c (t)
}

Π∗j(t)

{K ft(tbn)− 1
}
dt.

Since V ar[ξc,j] < ∞ under Assumption (5), V ar[vn,2(aj)] = o(1) as K ft(tbn) → 1 as

n→∞, and the conclusion follows if

V ar[vn,1(aj)] = o(1). (A.7)

To show (A.7), using Lemma 4 and 5, we can write vn,1(aj) = vn,1,1(aj) + vn,1,2(aj), where

vn,1,1(aj) =
bα−2
n

π(α− 1)!

ˆ 
´
e−itx/bn

{
if ft(t/bn)

´ t/bn
0

{
−{f

ft}′(s)
f ft(s)

+ iXj

}
eisWj

f ft(s)f ftν (s)
ds
}
K ft(t)dt

×
´
K(u){h(α)

c (x+ bnūh)− h(α)
c (x)}uα−1du

 dx,

vn,1,2(aj) =
−bα−2

n

π(α− 1)!

ˆ

´
e−itx/bn


{

(Yj − cWj)− hftc (t/bn)
f ft(t/bn)

}
eitXj/bn

f ftε (t/bn)

+ihft
c (t/bn)

´ t/bn
0

{
−{f

ft}′(s)
f ft(s)

+ iXj

}
eisWj

f ft(s)f ftν (s)
ds

K ft(t)dt

×
´
K(u){f (α)(x+ bnūf )− f (α)(x)}uα−1du

 dx.

For vn,1,1(aj), we have

V ar[vn,1,1(aj)] ≤ E[|vn,1,1(aj)|2]

=E


∣∣∣∣∣∣∣

bα−1
n

π(α− 1)!

ˆ 
´
e−it̃x

{
if ft(t̃)

´ t̃
0

{
−{f

ft}′(s)
f ft(s)

+ iXj

}
eisWj

f ft(s)f ftν (s)
ds
}
K ft(t̃bn)dt̃

×
´
K(u){h(α)

c (x+ bnūh)− h(α)
c (x)}uα−1du

 dx

∣∣∣∣∣∣∣
2

≤E


b

α−1
n

ˆ

´ {´ t̃

0

{
|{f ft}′(s)|
|f ft(s)| + |Xj|

}
1

|f ft(s)||f ftν (s)|ds
}
|K ft(t̃bn)|dt̃

×
´
K(u)|h(α)

c (x+ bnūh)− h(α)
c (x)︸ ︷︷ ︸

≤m(x)bn|u|

||u|α−1du

 dx


2

=O

(
b

2(α−1)
n

{inf |t|≤b−1
n
|f ft
ν (t)|}2{inf |t|≤b−1

n
|f ft(t)|}4

)
,
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where the second step follows from the change of variables t̃ = t/bn and the last step uses

the fact that K ft is supported on [−1, 1] as in Assumption (3). By similar argument, we

can show

V ar[vn,1,2(aj)] = O

 b
2(α−1)
n {inf |t|≤b−1

n
|f ft(t)|}−2

min
{
{inf |t|≤b−1

n
|f ft
ε (t)|}2, {inf |t|≤b−1

n
|f ft
ν (t)|}2{inf |t|≤b−1

n
|f ft(t)|}2

}
 ,

and (A.7) follows from Assumption (4).
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B Lemmas

Lemma 1. Under Assumption (1), for ι = 1, 2, 3,

sup
|t|≤b−1

n

|δ̂ι(t)| = Op

(
n−1/2 log(1/bn)

)
.

Proof. See Lemma 2 in Kurisu and Otsu (2022).

Lemma 2. Under Assumptions (1) and (4),

sup
|t|≤b−1

n

|Π̂(t)| = Op

 n−1/2 log(1/bn){inf |t|≤b−1
n
|f ft(t)|}−1

min
{

inf |t|≤b−1
n
|f ft
ε (t)|, {inf |t|≤b−1

n
|f ft
ν (t)|}2 inf |t|≤b−1

n
|f ft(t)|bn

}
 ,

sup
|t|≤b−1

n

|Π̂res(t)| = Op

 n−1 log(1/bn)2{inf |t|≤b−1
n
|f ft(t)|}−1

min
{

inf |t|≤b−1
n
|f ft
ε (t)|, {inf |t|≤b−1

n
|f ft
ν (t)|}4{inf |t|≤b−1

n
|f ft(t)|}3b2

n

}
 .

Proof. The first statement follows by

sup
|t|≤b−1

n

|Π̂(t)| = Op

(
sup|t|≤b−1

n
|δ̂1(t)|

inf |t|≤b−1
n
|µ1(t)|

+ b−1
n

{
sup|t|≤b−1

n
|µ3(t)| sup|t|≤b−1

n
|δ̂2(t)|

{inf |t|≤b−1
n
|µ2(t)|}2

+
sup|t|≤b−1

n
|δ̂3(t)|

inf |t|≤b−1
n
|µ2(t)|

})

= Op

 n−1/2 log(1/bn){inf |t|≤b−1
n
|f ft(t)|}−1

min
{

inf |t|≤b−1
n
|f ft
ε (t)|, {inf |t|≤b−1

n
|f ft
ν (t)|}2 inf |t|≤b−1

n
|f ft(t)|bn

}
 ,

where the last step uses Lemma 1,
inf|t|≤b−1

n
|µ1(t)|

inf|t|≤b−1
n
|f ftε (t)| inf|t|≤b−1

n
|f ft(t)| ≥ 1,

inf|t|≤b−1
n
|µ2(t)|

inf|t|≤b−1
n
|f ftν (t)| inf|t|≤b−1

n
|f ft(t)| ≥

1, and sup|t|≤b−1
n
|µ3(t)| = O(1) under Assumption (1).

For the second statement, observe that,

sup
|t|≤b−1

n

|φ̄(t)| =Op

 b−1
n

{
sup|t|≤b−1

n
|µ3(t)| sup|t|≤b−1

n
|δ̂2(t)|

{inf|t|≤b−1
n
|µ2(t)|}2 +

sup|t|≤b−1
n
|δ̂3(t)|

inf|t|≤b−1
n
|µ2(t)|

}
×
{

1 +
sup|t|≤b−1

n
|δ̂2(t)|

inf|t|≤b−1
n
|µ2(t)+δ̂2(t)|

}
 ,

=Op

(
n−1/2b−1

n log(1/bn)

{inf |t|≤b−1
n
|f ft
ν (t)|}2{inf |t|≤b−1

n
|f ft(t)|}2

)
= op(1),

where the second step uses Lemma 1,
inf|t|≤b−1

n
|µ2(t)|

inf|t|≤b−1
n
|f ftν (t)| inf|t|≤b−1

n
|f ft(t)| ≥ 1, and sup|t|≤b−1

n
|µ3(t)| =

O(1) under Assumption (1), and the last step follows from Assumption (4), which implies
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sup|t|≤b−1
n
e|φ̄(t)| = Op(1). The conclusion then follows by

sup
|t|≤b−1

n

|Π̂res(t)| = Op



{sup|t|≤b−1
n
|δ̂1(t)|}2

inf|t|≤b−1
n
|µ1(t)+δ̂1(t)| + b−1

n

{
sup|t|≤b−1

n
|µ3(t)| sup|t|≤b−1

n
|δ̂2(t)|

{inf|t|≤b−1
n
|µ2(t)|}2 +

sup|t|≤b−1
n
|δ̂3(t)|

inf|t|≤b−1
n
|µ2(t)|

}

×


sup|t|≤b−1

n
|δ̂1(t)|

inf|t|≤b−1
n
|µ1(t)| +

{sup|t|≤b−1
n
|δ̂1(t)|}2

inf|t|≤b−1
n
|µ1(t)+δ̂1(t)| +

sup|t|≤b−1
n
|δ̂2(t)|

inf|t|≤b−1
n
|µ2(t)+δ̂2(t)|

+
sup|t|≤b−1

n
|δ̂2(t)|

inf|t|≤b−1
n
|µ2(t)+δ̂2(t)|

{
sup|t|≤b−1

n
|δ̂1(t)|

inf|t|≤b−1
n
|µ1(t)| +

{sup|t|≤b−1
n
|δ̂1(t)|}2

inf|t|≤b−1
n
|µ1(t)+δ̂1(t)|

}


+b−2
n

{
sup|t|≤b−1

n
|µ3(t)| sup|t|≤b−1

n
|δ̂2(t)|

{inf|t|≤b−1
n
|µ2(t)|}2 +

sup|t|≤b−1
n
|δ̂3(t)|

inf|t|≤b−1
n
|µ2(t)|

}2

×
{

1 +
sup|t|≤b−1

n
|δ̂2(t)|

inf|t|≤b−1
n
|µ2(t)+δ̂2(t)|

}2{
1 +

sup|t|≤b−1
n
|δ̂1(t)|

inf|t|≤b−1
n
|µ1(t)| +

{sup|t|≤b−1
n
|δ̂1(t)|}2

inf|t|≤b−1
n
|µ1(t)+δ̂1(t)|

}


= Op

 n−1 log(1/bn)2{inf |t|≤b−1
n
|f ft(t)|}−1

min
{

inf |t|≤b−1
n
|f ft
ε (t)|, {inf |t|≤b−1

n
|f ft
ν (t)|}4{inf |t|≤b−1

n
|f ft(t)|}3b2

n

}
 ,

where the last step uses Lemma 1,
inf|t|≤b−1

n
|µ1(t)|

inf|t|≤b−1
n
|f ftε (t)| inf|t|≤b−1

n
|f ft(t)| ≥ 1,

inf|t|≤b−1
n
|µ2(t)|

inf|t|≤b−1
n
|f ftν (t)| inf|t|≤b−1

n
|f ft(t)| ≥

1, and sup|t|≤b−1
n
|µ3(t)| = O(1) under Assumption (1).

Lemma 3. Under Assumption (1),

sup
|t|≤b−1

n

E[|Π1(t)|2] = O

 {inf |t|≤b−1
n
|f ft(t)|}−2

min
{
{inf |t|≤b−1

n
|f ft
ε (t)|}2, {inf |t|≤b−1

n
|f ft
ν (t)|}2b2

n

}
 ,

which implies that for s = 0, 1,

sup
|t|≤b−1

n

E[|(Y1 − cW1)sΠ1(t)|] = O

 {inf |t|≤b−1
n
|f ft(t)|}−1

min
{

inf |t|≤b−1
n
|f ft
ε (t)|, inf |t|≤b−1

n
|f ft
ν (t)|bn

}
 .

Proof. The second statement follows by the first statement, the Cauchy-Schwartz inequal-

ity and Assumption (1). The conclusion then follows by

sup
|t|≤b−1

n

E[|Π1(t)|2] ≤ E

[
sup
|t|≤b−1

n

∣∣∣∣−δ1,1(t)

µ1(t)
+ i

ˆ t

0

{
−µ3(s)δ2,1(s)

µ2
2(s)

+
δ3,1(s)

µ2(s)

}
ds

∣∣∣∣2
]

≤E

(sup|t|≤b−1
n
|δ1,1(t)|

inf |t|≤b−1
n
|µ1(t)|

+ b−1
n

{
sup|t|≤b−1

n
|µ3(t)| sup|t|≤b−1

n
|δ2,1(t)|

{inf |t|≤b−1
n
|µ2(t)|}2

+
sup|t|≤b−1

n
|δ3,1(t)|

inf |t|≤b−1
n
|µ2(t)|

})2


=O

(
E[sup|t|≤b−1

n
|δ1,1(t)|2]

{inf |t|≤b−1
n
|µ1(t)|}2

+
{sup|t|≤b−1

n
|µ3(t)|}2E[sup|t|≤b−1

n
|δ2,1(t)|2]

b2
n{inf |t|≤b−1

n
|µ2(t)|}2

+
E[sup|t|≤b−1

n
|δ3,1(t)|2]

b2
n{inf |t|≤b−1

n
|µ2(t)|}2

)

=O

 {inf |t|≤b−1
n
|f ft(t)|}−2

min
{
{inf |t|≤b−1

n
|f ft
ε (t)|}2, {inf |t|≤b−1

n
|f ft
ν (t)|}2b2

n

}
 ,
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where the last step uses
inf|t|≤b−1

n
|µ1(t)|

inf|t|≤b−1
n
|f ftε (t)| inf|t|≤b−1

n
|f ft(t)| ≥ 1,

inf|t|≤b−1
n
|µ2(t)|

inf|t|≤b−1
n
|f ftν (t)| inf|t|≤b−1

n
|f ft(t)| ≥ 1,

sup|t|≤b−1
n
|µ3(t)| = O(1) and E[sup|t|≤b−1

n
|δι,1(t)|2] < ∞ for ι = 1, 2, 3 under Assumption

(1).

Lemma 4. Under Assumptions (1) and (3), for s, k = 0, 1,

E

[
(Y −W )sK(k)

(
x−X
bn

)]
= E

[
(Y −W )sK(k)

(
x−X∗

bn

)]
.

Proof. For s, k = 0, 1,

E

[
(Y −W )sK(k)

(
x−X
bn

)]
= E

[
(Y −W )s

{
1

2π

ˆ
e−it(x−Xbn )K

ft(t)(−it)k

f ft
ε (t/bn)

dt

}]
= E

[
(Y −W )s

{
1

2π

ˆ
e
−it
(
x−X∗
bn

)
K ft(t)(−it)kdt

}]
= E

[
(Y −W )sK(k)

(
x−X∗

bn

)]
,

where the second step follows from the independence between ε and Y , and the last step

follows from the fact {K(k)}ft(t) = K ft(t)(−it)k for k = 0, 1.

Lemma 5. Under Assumptions (2) and (3), for k = 0, 1,

b−(k+1)
n E

[
K(k)

(
x−X∗

bn

)]
= f (k)(x) +

bα−kn

(α− k)!

ˆ
K(u){f (α)(x+ bnūf )− f (α)(x)}uα−kdu,

b−(k+1)
n E

[
(Y − cW )K(k)

(
x−X∗

bn

)]
= h(k)

c (x) +
bα−kn

(α− k)!

ˆ
K(u){h(α)

c (x+ bnūh)− h(α)
c (x)}uα−kdu,

for some ūf and ūh such that max{|ūf |, |ūh|} ≤ |u|.

Proof. Since the arguments are similar, we focus on the second statement when k = 1,

which follows from

b−2
n E

[
(Y − cW )K ′

(
x−X∗

bn

)]
= b−2

n

ˆ
hc(x

∗)K ′
(
x− x∗

bn

)
dx∗

=− b−1
n

ˆ
hc(x

∗)dK

(
x− x∗

bn

)
= b−1

n

ˆ
K

(
x∗ − x
bn

)
h′c(x

∗)dx∗

=

ˆ
K(u) h′c(x+ bnu)︸ ︷︷ ︸∑α−1

l=0
h
(l+1)
c (x)
l!

blnu
l+

bα−1
n

(α−1)!
{h(α)c (x+bnūf )−h(α)c (x)}uα−1

du

=h′c(x) +
bα−1
n

(α− 1)!

ˆ
K(u){h(α)

c (x+ bnūf )− h(α)
c (x)}uα−1du,
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where the third step follows from the integration by parts and the symmetry of the kernel

function K, the fourth step follows from the change of variables u = (x∗− x)/bn, and the

last step follows from the property of the kernel function K as in Assumption (3).
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Figure 1: Monte Carlo Simulation Results

Notes: The vertical axis measures the rejection frequency for H0 : θ1 ≥ 0
with the nominal size of 0.05. The horizontal axis measures the deviation
δ ∈ [0.0, 0.5] from the null hypothesis H0 : θ1 ≥ 0. The dashed (respec-
tively, solid) line indicates the results with N = 250 (respectively, 500).
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Table 1: Summary Statistics of U.S. PSID for 2013, 2015, 2017, and 2019.

Year Log Income Log Consumption X W Y
2013 10.682 10.501 0.167 0.145 0.033

(1.086) (0.762) (0.730) (0.772) (0.429)
2015 10.766 10.537

(1.061) (0.739)
2017 10.857 10.578

(1.021) (0.696)
2019 10.920 10.640

(1.042) (0.708) Observations = 5976

Notes: Displayed values are the sample means. Parentheses enclose sample
standard deviations.
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