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Abstract

Utilizing parametric and nonparametric techniques, we assess the role of a heretofore relatively unex-
plored �input� in the educational process, homework, on academic achievement. Our results indicate
that homework is an important determinant of student test scores. Relative to more standard spending
related measures, extra homework has a larger and more signi�cant impact on test scores. However, the
e¤ects are not uniform across di¤erent subpopulations. Speci�cally, we �nd additional homework to be
most e¤ective for high and low achievers, which is further con�rmed by the stochastic dominance analy-
sis. Moreover, the parametric estimates of the educational production function overstate the impact of
schooling related inputs. In all estimates, the homework coe¢ cient from the parametric model maps to
the upper deciles of the nonparametric coe¢ cient distribution and as a by-product the parametric model
understates the percentage of students with negative responses to additional homework.
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1 Introduction

Real expenditures per student in the United States have more than tripled over the last four decades

and that public spending on elementary and secondary education amounts to approximately $200 billion.

Unfortunately, the substantial growth in resources devoted to schools have not been accompanied by

any signi�cant changes in student achievement (Hoxby 1999). Given this discontinuity between educa-

tional expenditures and student achievement, economists have produced a voluminous body of research

attempting to explore the primary in�uences of student learning. The vast majority of papers in this

area have focused on spending related �inputs�such as class size and teachers�credentials. With a few

exceptions, these studies conclude that measured school �inputs� have only limited e¤ects on student

outcomes (Hanushek 2003). In light of these pessimistic �ndings, it is surprising how little work has

been devoted to understanding the impact of other aspects of the educational environment on student

achievement.1 In particular, given the parental concerns, policy debates and media interest (e.g., Time

Magazine, 25 January 1999), very little research to date has been completed on the role of homework.

We know of two empirical studies that examine the e¤ects of homework on student outcomes. Aksoy

and Link (2000), using the National Educational Longitudinal Study of 1988 (NELS:88), �nd positive and

signi�cant e¤ects of homework on tenth grade math test scores. However, the authors rely on student

responses regarding the hours of homework, which carries the potential risk of a spurious correlation

since it likely re�ects unobserved variation in student ability and motivation. Betts (1997) presents the

only empirical work that, to our knowledge, focuses on the hours of homework assigned by the teacher.

This measure of homework is actually a policy variable, which the school or teacher can control. Using

the Longitudinal Study of American Youth, Betts obtains a substantial e¤ect of homework on math test

scores. Speci�cally, an extra half hour of math homework per night in grades 7 to 11 is estimated to

advance a student nearly two grade equivalents. Furthermore, in a nonlinear model setting, the author

1Notable exceptions are Eren and Millimet (2006), Figlio and Lucas (2003) and Fuchs and Wößmann (2006). These
studies examine the impact of other aspects of schooling such as the time structure, grading standards and institutional
factors on student achievement.
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argues that virtually all students (99.3% of the sample) could bene�t from extra homework and thus

math teachers could increase almost all students achievement by assigning more homework.

Although the aforementioned papers provide careful and important evidence on the e¤ects of home-

work, there are numerous gaps remaining. First, there may be heterogeneity in the returns to homework.

Theoretical treatments of the topic indicate that the responses to extra homework will depend on stu-

dent�s ability level (see, e.g., Betts 1997 and Neilson 2005). In this respect, the impact of homework

may di¤er among students. Second, the existing educational production function literature relies mostly

on parametric regression models. Although popular, parametric models require stringent assumptions.

In particular, the errors are generally assumed to come from a speci�ed distribution and the functional

form of the educational production function is given a priori. Since the theory predicts a non-monotonic

relation between homework and student achievement, a parametric speci�cation which fully captures the

true relation may be di¢ cult to �nd. Further, if the functional form assumption does not hold, the

parametric model will most likely lead to biased estimates.

In order to alleviate some of these potential shortcomings, we adopt a nonparametric approach.

Nonparametric estimation procedures relax the functional form assumptions associated with traditional

parametric regression models and create a tighter �tting regression curve through the data.2 These

procedures do not require assumptions on the distribution of the error nor do they require speci�c

assumptions on the form of the underlying production function. Furthermore, the procedures generate

unique coe¢ cient estimates for each observation for each variable. This attribute enables us to make

inference regarding heterogeneity in the returns.

Utilizing the above stated techniques and the NELS:88, we reach four striking empirical �ndings. First,

controlling for teacher�s evaluation of the overall class achievement in the educational production function

is crucial. In the absence of such a control, the schooling �inputs� are overstated. Second, relative to

more standard spending related measures such as class size, extra homework appears to have a larger and

2Nonparametric estimation has been used in other labor economics domains to avoid restrictive functional form assump-
tions (e.g., see Henderson et al. 2006 and Kniesner and Li 2002).
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more signi�cant impact on mathematics achievement. However, the e¤ects are not homogenous across

subpopulations. We �nd additional homework to be more e¤ective for high and low achievers relative to

average achievers. This is further uniformly con�rmed by introducing stochastic dominance techniques

into the examination of returns between groups from a nonparametric regression. Third, in contrast to

time spent on homework, time spent in class is not a signi�cant contributor to math test scores. This may

suggest that learning by doing is a more e¤ective tool for improvement in student achievement. Finally,

the parametric estimates of the educational production function overstate the impact of schooling related

inputs. In particular, both the homework and class size coe¢ cients from the preferred parametric model

map to the upper deciles of the coe¢ cient distribution of the nonparametric estimates. Moreover, the

parametric model understates the percentage of students with negative responses to an additional hour

of homework.

The remainder of the paper is organized as follows: Section 2 provides a short sketch of the theoretical

background. The third section describes the estimation strategy, as well as the statistical tests used in

the paper. Section 4 discusses the data and the �fth section presents the results. Finally, Section 6

concludes.

2 Theoretical Background

To motivate our empirical methodology, we brie�y summarize the theoretical models of homework ef-

fectiveness on test scores following Betts (1997) and Neilson (2005). The existing models rest on three

important assumptions: (i) Students have di¤erences in abilities and thus require di¤erent amounts of

time to complete the same homework assignment. (ii) Homework is bene�cial, at least in small amounts

and (iii) Students are time constrained. In the absence of the third assumption, additional homework

can bene�t all students regardless of ability level. However, once the third assumption comes into play,

further homework will only a¤ect those who have not hit their individual time constraint or �give-up�

limit.
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Formally, let M be the (same) amount of time that each student has available for completing their

homework assignment and let H(ai;HWm) be the amount of time spent on homework by student i,

which is a function of his/her ability (a) and the number of units of homework (HW ) assigned by teacher

m. Moreover, let f be a production function that transforms the ability of student i and the homework

assigned by teacher m into a test score as TSi = f(ai;HWm). It is assumed that TS is an increasing

function of a. More homework also leads to higher test scores by assumption (ii) and students who have

higher ability complete their homework assignments more quickly under assumption (iii); dH=da < 0.

In addition to the three assumptions, suppose that each unit of homework takes the same length of

time for a given student (i.e., H is homogeneous of degree one with respect to homework) so that the

most homework a student can do is M=H(a; 1) units. Note that M=H(a; 1) is an increasing function of

ability since the denominator is decreasing in a. Then, for any two random students where the ability of

the �rst is strictly greater than the second, there exists a level of homework above which the di¤erence

between the test score of the �rst and second student is nondecreasing for a given M .3 In other words,

when the low able student has reached their time constraint but the high able has not, further homework

only positively a¤ects the high ability student. Therefore, the responses to additional homework will

depend on how far each student is from their individual speci�c �give-up�limit and the relation between

test scores and homework is non-monotonic.

3 Empirical Methodology

3.1 Parametric Model

We begin our empirical methodology with a parametric speci�cation of the educational production func-

tion as

TSilkm = f(HWm;Wi; Ck; Tm; �l; �i; �) + "ilkm; (1)

3See Proposition 2 of Neilson (2005) for the full proof.
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where, as described above, TS is the test score of student i in school l in class k and HW denotes the

hours of homework assigned by teacher m: The vector W represents individual and family background

characteristics, as well as ex ante achievement (lagged test scores), C is a vector of class inputs and T

is a vector of teacher characteristics. We control for all factors invariant within a given school with the

�xed e¤ect �, � is the endowed ability of student i, � is a vector of parameters to be estimated and " is

a zero mean, normally distributed error term. We attempt to capture ability (a) with lagged test scores

and a host of variables de�ned for �. Our main parameter of interest is the coe¢ cient on homework,

which represents the e¤ect of an additional hour of homework on student test scores.

3.2 Generalized Kernel Estimation

Parametric regression models require one to specify the functional form of the underlying data generating

process prior to estimation. Correctly speci�ed parametric models provide consistent estimates and

inference based on such estimates is valid. However, uncertainty exists about the shape of the educational

production function because the theory does not provide a guide as to an appropriate functional form

(e.g., see Betts 1997, Hanushek 2003, and Todd and Wolpin 2003). There could be nonlinear/non-

monotonic relations as well as interactions among regressors, which standard parametric models may

not capture. Furthermore, typical parametric models do not fully conform to the theoretical model

described in section 2 since they commonly ignore any information regarding heterogeneity in responses

to additional homework.

Given the potential shortcomings of parametric models, we also estimate a nonparametric version of

(1). To proceed, we utilize Li-Racine Generalized Kernel Estimation (Li and Racine 2004 and Racine

and Li 2004) and express the test score equation as

TSi = �(xi) + ei; i = 1; :::; N (2)

where �(�) is the unknown smooth educational production function, ei is an additive error term and N
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is the sample size. The covariates of equation (1) are subsumed in xi = [xci ; x
u
i ; x

o
i ], where x

c
i is a vector

of continuous regressors (e.g., hours of homework), xui is a vector of regressors that assume unordered

discrete values (e.g., race), and xoi is a vector of regressors that assume ordered discrete values (e.g.,

parental education).

Taking a �rst-order Taylor expansion of (2) with respect to xj yields

TSi � �(xj) + (xci � xcj)�(xj) + ei; (3)

where �(xj) is de�ned as the partial derivative of �(xj) with respect to xc: The estimator of �(xj) �
��(xj)
�(xj)

�
is given by

b�(xj) =

�b�(xj)b�(xj)
�
=

2664 NX
i=1

Kbh;b�u;b�o
0BB@ 1

�
xci � xcj

�
�
xci � xcj

� �
xci � xcj

��
xci � xcj

�0
1CCA
3775
�1

�
NX
i=1

Kbh;b�u;b�o
�

1�
xci � xcj

��TSi; (4)

where Kbh;b�u;b�o is the commonly used product kernel for mixed data (Li and Racine 2006). bh refers to the
estimated bandwidth associated with the standard normal kernel for a particular continuous regressor.

Similarly, b�u refers to the estimated bandwidth associated with the Aitchison and Aitken�s (1976) kernel
function for unordered categorical data and b�o is the estimated bandwidth for the Wang and Van Ryzin
(1981) kernel function for ordered categorical data.

Estimation of the bandwidths (h; �u; �o) is typically the most salient factor when performing non-

parametric estimation. For example, choosing a very small bandwidth means that there may not be

enough points for smoothing and thus we may get an undersmoothed estimate (low bias, high variance).

On the other hand, choosing a very large bandwidth, we may include too many points and thus get

an oversmoothed estimate (high bias, low variance). This trade-o¤ is a well known dilemma in applied

nonparametric econometrics and thus we resort to automatic determination procedures to estimate the
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bandwidths. Although there exist many selection methods, one popular procedure (and the one used in

this paper) is that of Least-Squares Cross-Validation. In short, the procedure chooses (h; �u; �o) which

minimize the least-squares cross-validation function given by

CV (h; �u; �o) =
1

N

NX
j=1

[TSj � b��j(xj)]2; (5)

where b��j(�) is the commonly used leave-one-out estimator of �(x).4
3.3 Model Selection Criteria

To assess the correct estimation strategy, we utilize the Hsiao et al. (2003) speci�cation test for

mixed categorical and continuous data. The null hypothesis is that the parametric model (f(xi; �))

is correctly speci�ed (H0 : Pr [E(TSijxi) = f(xi; �)] = 1) against the alternative that it is not (H1 :

Pr [E(TSijxi) = f(xi; �)] < 1). The test statistic is based on I � E
�
E ("jx)2 f(x)

�
, where " = y�f(x; �).

I is non-negative and equals zero if and only if the null is true. The resulting test statistic is

J =
N
p
h1h2 � � �hqbIb� � N(0; 1); (6)

where

bI =
1

N2

NX
i=1

NX
j=1;j 6=i

b"ib"jKbh;b�u;b�o ;
b�2 =

2h1h2 � � �hq
N2

NX
i=1

NX
j=1;j 6=i

b"2ib"2jK2bh;b�u;b�o ;

Kbh;b�u;b�o is the product kernel, and q is the number of continuous regressors. If the null is false, J

diverges to positive in�nity. Unfortunately, the asymptotic normal approximation performs poorly in

�nite samples and a bootstrap method is generally suggested for approximating the �nite sample null

4All bandwidths in this paper are calculated using N c
.
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distribution of the test statistic. This is the approach we take.

3.4 Stochastic Dominance

Nonparametric estimation as described in equation (4) generates unique coe¢ cient estimates for each

observation for each variable. This feature of nonparametric estimation enables us to compare (rank)

the returns for subgroups and thus make inferences about who bene�ts most from additional homework.

Here we propose using stochastic dominance tests for empirical examination of such comparisons.5 The

comparison of the e¤ectiveness of a policy on di¤erent subpopulations based on a particular index (such

as a conditional mean) is highly subjective; di¤erent indices may yield substantially di¤erent conclusions.

In contrast, �nding a stochastic dominance relation provides uniform ranking regarding the impact of the

policy among di¤erent groups and o¤ers robust inference.

To proceed, let � (HW ) be the actual e¤ect of an additional hour of homework on test scores unique

to an individual (other regressors can be de�ned similarly). If there exists distinct known groups within

the sample, we can examine the returns between any two groups, say w and v. Here w and v might refer

to males and females, respectively. Denote �w (HW ) as the e¤ect of an additional hour of homework on

test scores to a speci�c individual in group w. �v (HW ) is de�ned similarly. Note that the remaining

covariates are not constrained to be equal across or within groups.

In practice, the actual e¤ect of an additional hour of homework on test scores is unknown, but the

nonparametric regression gives us an estimate of this e¤ect. fb�w;i (HW )gNwi=1 is a vector of Nw estimates
of �w (HW ) and fb�v;i (HW )gNvi=1 is an analogous vector of estimates of �v (HW ). F (�w (HW )) and
G(�v (HW )) represent the cumulative distribution functions of �w (HW ) and �v (HW ), respectively.

Consider the null hypotheses of interest as

5For empirical applications of stochastic dominance tests on school quality data see Eren and Millimet (2006) and Maa-
soumi et al. (2005). For an empirical application of stochastic dominance tests on �tted values obtained via nonparametric
regression see Maasoumi et al. (2007).
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Equality of Distributions :

F (� (HW )) = G(� (HW )) 8� (HW ) 2 
: (7a)

First Order Stochastic Dominance : F dominates G if

F (� (HW )) � G(� (HW )) 8� (HW ) 2 
; (7b)

where 
 is the union support for �w (HW ) and �v (HW ) : To test the null hypotheses, we de�ne the

empirical cumulative distribution function for �w (HW ) as

bF (�w (HW )) = 1

Nw

NwP
i=1
1(b�w;i (HW ) � �w (HW )); (8)

where 1 (�) denotes the indicator function and bG(�v (HW )) is de�ned similarly. Next, we de�ne the
following Kolmogorov-Smirnov statistics

TEQ = sup
�(HW )2


j bF (� (HW ))� bG(� (HW ))j; (9a)

TFSD = sup
�(HW )2


( bF (� (HW ))� bG(� (HW ))); (9b)

for testing the equality and �rst order stochastic dominance (FSD) relation, respectively.

Unfortunately, the asymptotic distributions of these nonparametric sample based statistics under the

null are generally unknown because they depend on the underlying distributions of the data. We need to

approximate the empirical distributions of these test statistics to overcome this problem. The strategy

following Abadie (2002) is as follows:

(i) Let T be a generic notation for TEQ and for TFSD: Compute the test statistics T for the orig-

inal sample of fb�w;1 (HW ) ; b�w;2 (HW ) ; : : : ; b�w;Nw (HW )g and fb�v;1 (HW ) ; b�v;2 (HW ) ; : : : ; b�v;Nv (HW )g:
9



(ii) De�ne the pooled sample as 
 = fb�w;1 (HW ) ; b�w;2 (HW ) ; : : : ; b�w;Nw (HW ) ; b�v;1 (HW ) ;
b�v;2 (HW ) ; : : : ; b�v;Nv (HW )g. Resample Nw +Nv observations with replacement from 
 and

call it 
b: Divide 
b into two groups to obtain bTb:
(iii) Repeat step (ii) B times.

(iv) Calculate the p-values of the tests with p-value = B�1
PB
b=1 1(

bTb > T ): Reject the null
hypotheses if the p-value is smaller than some signi�cance level �; where � 2 (0; 1=2):

By resampling from 
; we approximate the distribution of the test statistics when F (� (HW )) =

G(� (HW )): Note that for (7b), F (� (HW )) = G(� (HW )) represents the least favorable case for the

null hypothesis. This strategy allows us to estimate the supremum of the probability of rejection under

the composite null hypothesis, which is the conventional de�nition of test size.6

4 Data

The data is obtained from the National Educational Longitudinal Study of 1988 (NELS:88), a large

longitudinal study of eighth grade students conducted by the National Center for Educational Statistics.

The NELS:88 is a strati�ed sample, which was chosen in two stages. In the �rst stage, a total of 1032

schools on the basis of school size were selected from a universe of approximately 40,000 schools. In

the second stage, up to 26 students were selected from each of the sample schools based on race and

gender. The original sample contains approximately 25,000 eighth grade students. Follow-up surveys

were administered in 1990, 1992, 1994 and 2000.

To measure academic achievement, students were administered cognitive tests in reading, social sci-

ences, mathematics and science during the spring of the base year (eighth grade), �rst follow-up (tenth

6 Ideally we would like to reestimate the nonparametric returns within each bootstrap replication to take into account the
uncertainty of the returns. Unfortunately, it could be argued that in doing this we should reestimate the bandwidths for
each bootstrap replication, which would be extremely computationally di¢ cult, if not impossible. Thus, the bootstrapped
p-values most likely di¤er slightly from their �true� values. Nonetheless, if we obtain a large p-value, it is unlikely that
accounting for such uncertainty would alter the inference.
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grade) and second follow-up (twelfth grade). Each of the four grade speci�c tests contain material ap-

propriate for each grade, but included su¢ cient overlap from previous grades to permit measurement of

academic growth. Although four test scores are available per student, teacher and class information sets

(discussed below) are only available for two subjects per student.

We utilize tenth grade math test scores as our dependent variable in light of the �ndings of Grogger

and Eide (1995) and Murnane et al. (1995).7 These studies �nd a substantial impact of mathematics

achievement on postsecondary education, as well as on earnings. Our variable of interest is the hours

of homework assigned daily and comes directly from the student�s math teacher reports. This measure

of homework is a policy variable, which the school administrator or the teacher can control. Relying on

hours spent on homework from the student reports is not as accurate and may yield spurious correlations

since it may re�ect unobserved variation in student ability and motivation.8

Since researchers interested in the impact of school quality measures are typically (and correctly)

concerned about the potential endogeneity of school quality variables, we utilize a relatively lengthy vector

of student, family, endowed ability, teacher and classroom characteristics. The NELS:88 data enables us

to tie teacher and class-level information directly to individual students and thus circumvents the risk

of measurement error and aggregation bias. Furthermore, we include school �xed e¤ects as described

in equations (1) and (2) to capture di¤erences between schools that may a¤ect student achievement.

Speci�cally, our estimations control for the following variables:

Individual: gender, race, lagged (eighth grade) math test score;

Family: father�s education, mother�s education, family size, socioeconomic status of the

family;

Endowed Ability: ever held back a grade in school, ever enrolled in a gifted class, math

7We follow Boozer and Rouse (2001) and Altonji et al. (2005) and utilize item response theory math test scores.
8Even though hours of homework assigned by the teacher is a superior measure to hours of homework reported by the

student, it is far from being perfect since we only observe the quantity and not the quality of homework. This limitation
suggests directions for future research and data collection.
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grades from grade 6 to 8;

Teacher: gender, race, age, education;

School: school �xed e¤ects;

Class: class size, number of hours the math class meets weekly, teacher�s evaluation of the

overall class achievement.

Information on individual and family characteristics and endowed ability variables are obtained from

base year survey questionnaires and data pertaining to the math teacher and class comes from the �rst

follow-up survey. Observations with missing values for any of the variables de�ned above are dropped. We

further restrict the sample to students who attend public schools. Table 1 reports the weighted summary

statistics of some of the key variables for the 6913 students in the public school math sample and for the

regression sample used for estimation.9 The means and standard deviations in the regression sample are

similar to those obtained when using the full set of potential public school observations. This similarity

provides some assurance that missing values have not distorted our sample.

Prior to continuing, a few comments are warranted related to the issue of endogeneity/validity of the

set of control variables that we utilize. First, common with existing practice in the educational production

function literature, we include lagged (eighth grade) math test scores in our estimations. Lagged test

scores are assumed to provide an important control for ex ante achievement and capture all previous

inputs in the educational production process, giving the results a �value-added� interpretation (e.g.,

see Hanushek 1979, 2005). The value added speci�cation is generally regarded as being better than the

�contemporaneous�speci�cation to obtain consistent estimates of the contemporaneous inputs. However,

as indicated in Todd and Wolpin (2003), the value added speci�cation is highly susceptible to bias even

if the omitted inputs are orthogonal to the included inputs. The problem mainly arises due to the

correlation between lagged test scores and (unobserved) endowed ability. If this potential endogeneity

9Our regressions do not use weights. Instead we include controls for the variables used in the strati�cation, see Rose and
Betts (2004) for a similar approach.
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of lagged test scores is not taken into account, then the resulting bias will not only contaminate the

estimate of lagged test scores but may be transmitted to the estimates of all the contemporaneous input

e¤ects. To this end, we include a host of variables, as mentioned above, to capture the endowed ability

of students. Furthermore, even in the absence of (or along with) the aforementioned endogeneity, the

value added speci�cation may still generate biased estimates if the potential omitted inputs are correlated

with the lagged test scores. Todd and Wolpin (2003) propose the use of within-estimators (i.e., student

�xed e¤ect) in a longitudinal framework or within-family estimators as alternatives to the value added

speci�cation. We investigate whether the within-estimator a¤ects our results in the next section.

Second, the teacher�s evaluation of the class plays a crucial role in our estimations and therefore,

requires extra attention. The teachers surveyed in the NELS:88 are asked to report �which of the

following best describes the achievement level of the students in this class compared with the average

tenth grade student in this school.� Their choice is between four categories: high, average, low and

widely di¤ering. It is important to note that the overall class evaluation is not based on the test scores

since the teacher surveys were administered prior to the student surveys. That being said, given the

subjective nature of the question, we need to verify the quality of this variable. Under the assumption

that measurement error is not dominant, Bertrand and Mullainathan (2001) indicate that subjective

measures can be helpful as control variables in predicting outcomes. In Table 2, we report the summary

statistics of tenth grade math test scores disaggregated by teachers� evaluations. As seen in the �rst

column, the mean test scores are highest (lowest) for the high (low) achievement group. Moreover, the

within-class standard deviation (as well as overall standard deviation) displayed in the third column of

Table 2 is largest for the widely di¤ering achievement group. These �ndings provide some corroborative

evidence for the validity of teachers�responses in re�ecting overall class ability and thus measurement

error may not be a dominant issue.
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5 Empirical Results

5.1 Parametric Estimates

Our parametric speci�cations are presented in Table 3. For all regression estimates, White standard errors

are reported beneath each coe¢ cient. The �rst column of Table 3 gives a large signi�cant coe¢ cient for

homework. An additional hour of homework is associated with a gain of 4.01 (0.59) points in math

achievement. Given that the mean test score is approximately 52.22, this represents an increase of

slightly below eight percent. However, this model is simplistic in that it does not take into account many

observable variables that are known to a¤ect test scores. In the second column of Table 3, we include

demographic and family characteristics. There is a slight decrease in the homework coe¢ cient.

The third column adds student�s eighth grade math scores, which gives the results a value-added

interpretation. Including the student�s 8th grade math score greatly reduces the homework coe¢ cient

from 3.47 (0.50) to 0.90 (0.21). However, the coe¢ cient is still statistically signi�cant. In order to capture

the potential endogeneity of lagged test scores due to endowed ability, we include the endowed ability

variables in the fourth column of Table 3.10 Doing so reduces the coe¢ cient of homework to 0.77 (0.20)

and a slightly smaller decrease is observed in the eighth grade math score coe¢ cient as well.

An important concern regarding the e¤ect of homework and any other school quality variables is that

schools may di¤er in both observable and unobservable dimensions. If school traits are correlated with

homework or other inputs, then it is likely that the coe¢ cients will be biased. Therefore, it is most

prudent to control for any observed and unobserved factors common to all students in a school. We

accomplish this by including the school �xed e¤ects in the �fth column of Table 3. The school dummies

are jointly signi�cant (p-value = 0.00), but the homework coe¢ cient remains practically unchanged.

The sixth and seventh columns of Table 3 add teacher and classroom characteristics (class size and

weekly hours of math class), respectively. Even though the e¤ect of homework is similar in magnitude,

10The endowed ability variables are jointly signi�cant (p-value = 0.00).

14



two points are noteworthy regarding the selected covariate estimates. First, the class size coe¢ cient is

positive and statistically signi�cant at the 10 percent level in that increasing the number of students in a

math class from the sample average of 23 to 33 will lead to an increase of 0.25 points in math scores. This

�nding is consistent and similar in magnitude with Goldhaber and Brewer (1997), who use the NELS:88

to assess the impact of class size on tenth grade math test scores. Second, in contrast to Betts (1997),

we do not �nd a signi�cant e¤ect of weekly hours of math class on test scores. Moreover, the coe¢ cient

is substantially small in magnitude. It appears that time spent on homework is what matters.

The school �xed e¤ects should capture any factors common to all students in a school, but there

may still be some unobserved ability di¤erences across students within a school. For instance, if the

overall ability of students in a class is high due to nonrandomness in the assignment of students to

classes, then the teacher may increase (decrease) the homework load for students in that particular class.

If this is the case, the homework coe¢ cient is going to be upward (downward) biased. To control for

this possibility, we utilize the teachers� responses on the overall achievement level of the math class.

Assuming that measurement error is not dominant, this variable may be helpful in predicting test scores.

Regression estimates controlling for class achievement are given in the eighth column of Table 3. The

class achievement variables are jointly signi�cant (p-value = 0.00). The homework coe¢ cient is still

statistically signi�cant, but considerably diminished in magnitude. A similar reduction is observed in the

class size e¤ect as well and it is no longer signi�cant.

Finally, in the last column of Table 3, we test the potential nonlinear e¤ects of homework in the

parametric speci�cation by adding a quadratic term. In this model, the homework squared term is nega-

tive and statistically signi�cant, suggesting evidence for diminishing returns to the amount of homework

assigned. The return to homework becomes zero at around 2.96 hours per day and is negative afterwards.

This corresponds to 0.45% of the sample. At the mean level hours of homework, which is 0.64 per day,

the marginal product (partial e¤ect) of homework is roughly 0:89 (= 1:136� 2(0:192 � 0:64)).11

11To check for complementarity in the educational production function, we also tried to include interaction terms between
homework and other schooling inputs (class and teacher characteristics) one at a time. In no case did any of these interactions
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As noted above, the value added speci�cation relies on the exogeneity assumption of lagged test scores.

If our set of ability variables do not fully capture the endowed ability and/or there are some omitted

inputs correlated with lagged test scores, then our estimates are susceptible to bias. As a robustness

check, we utilize the longitudinal nature of the NELS:88 data for the sample of 6634 observations from

the �rst and second follow-up surveys and run a student �xed e¤ect model, assuming that the impact

of homework is the same across grades, rather than a value added speci�cation.12 The student �xed

e¤ect estimates are 0.96 (0.42) and -0.18 (0.09) for homework and homework squared (the partial e¤ect

of homework evaluated at the mean level of homework is 0.75), respectively and the remaining covariate

estimates are qualitatively similar to those presented in the last column of Table 3 (all estimates are

available upon request).13 In this respect, our value added speci�cation does not seem to be seriously

contaminated by endogeneity of lagged test scores and therefore, we take the quadratic value added model

(column 9) as our preferred parametric speci�cation for the remainder of the paper.

To summarize, our parametric estimates provide four key insights. First, inclusion of the teacher�s

evaluation of class achievement in the regression is crucial. In the absence of such a control, the coe¢ cients

on homework and class size are overstated. We believe that teacher�s assessment of the class purges out

some of the ability di¤erences within the school, as well as represents the teacher�s expectations from the

class and thus alleviates bias arising from the possible endogeneity of homework. Second, in contrast to

time spent on homework, time spent in class is not a signi�cant contributor to math test scores. This may

suggest that learning by doing is a more e¤ective tool for improvement in student achievement. Third,

compared to more standard spending related measures such as class size, additional homework appears

to have a larger and more signi�cant impact on math test scores. Fourth, hours of homework assigned

exhibit diminishing returns but only 0.45% of the sample respond negatively to additional homework.

become signi�cant at even the 10 percent level.
12 Ideally, we would like to include the eighth grade sample to our student �xed e¤ect estimation as well, however, the

teachers are not asked to report the daily hours of homework assigned in the base year sample.
13 In addition to socioeconomic status and size of the family, teacher and classroom characteristics, the student �xed e¤ect

estimation controls for the following school-grade speci�c variables: average daily attendance rate, percentage of students
from single parent homes, percentage of students in remedial math and percentage of limited English pro�ciency students.
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5.2 Nonparametric Estimates

Prior to discussing the results, we conduct the Hsiao et al. (2003) speci�cation test based on the as-

sumption that the correct functional form is the last column of Table 3. The preferred parametric model

(ninth column) is strongly rejected (p-value = 0.00); the linear parametric model (eighth column) is also

rejected (p-value = 0.00). These �ndings raise concerns regarding the functional form assumptions of the

educational production function in the existing school quality literature. Nonparametric models have the

potential to alleviate these concerns since these types of procedures allow for nonlinearities/interactions

in and among all variables.

Turning to the results, Table 4 displays the nonparametric estimates of homework on math test

scores.14 Given the number of parameters (unique coe¢ cient for each student in the sample) obtained

from the Generalized Kernel Estimation procedure, it is tricky to present the results. Unfortunately, no

widely accepted presentation format exists. Therefore, in Table 4, we give the mean estimate, as well

as the estimates at each decile of the coe¢ cient distribution along with their respective bootstrapped

standard errors. The mean nonparametric estimate is positive but statistically insigni�cant. Looking at

the coe¢ cient distribution, we observe a positive and marginally signi�cant e¤ect for the 60th percentile

and signi�cant e¤ects for the upper three deciles. The squared correlation between the actual and

predicted values of student achievement rises from 0.84 to 0.88 when we switch from the parametric

to nonparametric model. Precision set aside, the parametric estimate at the mean level of homework

obtained from the last column of Table 3 is larger than the corresponding mean of the nonparametric

estimate. More importantly, roughly 25% of the nonparametric estimates are negative. In other words,

more than 25% of the students do not respond positively to additional homework, whereas this ratio is only

0.45% of the sample from the parametric model. Table A1 in the Appendix displays the sample statistics

for those with negative homework coe¢ cients. The most interesting pattern, when we compare it with

14For all nonparametric estimates, we control for individual, family, endowed ability, teacher and classroom characteristics
as well as school �xed e¤ects.
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the regression sample, is observed in the overall class achievement. Students with negative coe¢ cients

are intensi�ed in classes, which the teacher evaluates as average. We further analyze this point in the

next sub-section.

Table 5 presents the nonparametric estimates of selected covariates. We present the mean, as well

as the nonparametric estimates corresponding to the 25th, 50th and 75th percentiles of the coe¢ cient

distribution (labelled Q1, Q2 and Q3). The results for the eighth grade math scores are in line with the

parametric estimates and are statistically signi�cant throughout the distribution. The class size e¤ect,

however, di¤ers from the parametric estimates. The mean nonparametric estimate indicates a reversal

in the sign of the class size e¤ect. Even though we do obtain primarily negative coe¢ cients, a majority

are insigni�cant and thus we are unable to draw a de�nite conclusion. The mean return to time spent

in class is also negative and larger in magnitude than the parametric estimate. In addition, the negative

e¤ect is statistically signi�cant at the �rst quartile.

In sum, the relaxation of the parametric speci�cation reveals at least three �ndings. First, at the

mean, the predicted e¤ect of homework from the parametric estimate (0.89) is roughly 1.5 times larger

than the nonparametric estimate (0.59). Second, parametric estimates understate the percentage of

students with negative responses to homework. However, extra homework continues to be signi�cantly

e¤ective for at least 40% of the sample under the nonparametric model. Third, the sign of the (mean)

class size coe¢ cient is reversed from positive to negative.

5.3 E¤ects of Homework by Achievement Group

Given the concentration of students with negative responses at the average achievement level, we further

explore the impact of homework on subgroups based on the teacher�s evaluation of the class. Note

that, in contrast to the parametric model, we do not need to split the sample and reestimate for each

subgroup because we have already obtained a unique coe¢ cient for homework for each individual in the

nonparametric model. Table 6 displays the mean nonparametric estimate, the impact at each decile of
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the coe¢ cient distribution, as well as the parametric estimate of homework for each subgroup. In the

parametric speci�cations, we exclude the homework squared term unless it is signi�cant at the 10 percent

level or better.

The �rst column of Table 6 presents the results for the high achievement group. The parametric

estimate of homework is signi�cant with a value of 2.25 (0.53) and is higher than the corresponding

90th percentile of the nonparametric coe¢ cient distribution; the mean nonparametric counterpart is 0.83

(0.40) and statistically signi�cant. Thus, the nonparametric model indicates that the parametric model

vastly overstates the homework e¤ect for virtually the entire subsample. In addition, the parametric

model cannot capture the heterogeneity inherent in the model. For instance, the homework e¤ect is more

than twice as large at the 90th percentile (1.79) of the coe¢ cient distribution as it is at the median (0.71).

The second column presents the estimates for the average achievement group. The parametric and

nonparametric estimates are substantially small in magnitude and do not yield any signi�cant e¤ect of

homework on math test scores. Even though the coe¢ cients are insigni�cant, the nonparametric model

indicates that nearly 40% of the subsample respond negatively to extra homework. This may not be

surprising given that the students with negative responses are intensi�ed in average achievement classes.

For the low achievement group, unlike the �rst two columns, we include the homework squared

term in the parametric speci�cation. The return to homework becomes zero at around 2.22 hours and is

negative afterwards. This corresponds to roughly 0.42% of the subsample. At the mean level of homework

(0.53 hours per day), the partial e¤ect of homework is 1.78 and is higher than the corresponding 80th

percentile of the nonparametric coe¢ cient distribution. The mean nonparametric estimate is 0.75 (0.41)

and marginally signi�cant. Similar to the �rst column, the parametric model overstates the homework

e¤ect and moreover, understates the percentage of students with negative responses, which is around 24%

of the subsample based on the nonparametric coe¢ cient distribution.

For completeness, the last column presents the estimates for students in classes with widely di¤ering

ability levels. The coe¢ cients are large in magnitude but are only statistically signi�cant for the upper
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three deciles of the nonparametric estimates.

Table 7 displays the results for selected covariates for each subgroup. We present the parametric

results, as well as the nonparametric mean estimates and the nonparametric estimates corresponding

to the 25th, 50th and 75th percentiles of the coe¢ cient distribution. Three results emerge. First, the

parametric estimates of eighth grade math scores are similar in magnitude to the mean (median) of the

nonparametric estimates. Second, for three of the subgroups (high, average and widely di¤ering), we

observe predominantly negative but insigni�cant coe¢ cients for class size. Similar to the full sample

estimates, the parametric models overstate the class size e¤ect. For the low achievement group, however,

the parametric class size e¤ect is positive, signi�cant and lies in the upper extreme tail of the correspond-

ing distribution of nonparametric estimates. Speci�cally, the parametric estimate, 0.12 (0.06), maps to

roughly the 85th percentile of the nonparametric coe¢ cient distribution. Finally, for the average achieve-

ment group, the nonparametric estimates of time spent in class are negative and statistically signi�cant

at the mean and median.

The �nal set of results are provided in Table 8. We report the p-values associated with the null

hypotheses of equality and FSD for the homework coe¢ cient distributions among the four subgroups.

The corresponding cumulative distribution functions are plotted in Figure 1. For all subgroups, we can

easily reject equality of distributions at conventional con�dence levels (p-value = 0.00). In terms of

rankings, homework return for the three subgroups (high, low and widely di¤ering) dominate average

achievers� returns in the �rst order sense and further con�rm that extra homework is less e¤ective or

may not be e¤ective at all for average achievers. We do not observe FSD between the widely di¤ering

ability group and low or high achievers. There is some evidence of FSD for the return distribution of

high achievers over low achievers, but this evidence is relatively weak.15

As discussed, the theoretical models suggest that homework should positively a¤ect the student�s

achievement up to some limit and then have no e¤ect. In this respect, extra homework leading gains for

15We also examine the returns to homework for subgroups based on gender and race. The tests do not lead to strong
conclusions for FSD. The results are available upon request.
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high achievers is not at odds with theory. The mean hours of homework for high achievers is 0.74 (0.40),

but this amount may be far away from the subgroup�s �give-up�limit. The potential puzzle in our results

is that extra homework is not e¤ective for average achievers, despite leading gains for low achievers. One

possibility is that average achievers are at the edge of their maximum e¤ort, whereas low achievers are

below their threshold level. The mean hours of homework are 0.64 (0.36) and 0.53 (0.37) for average and

low achievers, respectively. If the �give-up�level for low achievers is some value greater than 0.53, then

they will bene�t from the extra homework. Although this is by no means a de�nitive explanation for our

�ndings, it is a plausible explanation.16

6 Conclusion

The stagnation of academic achievement in the United States has given rise to a growing literature seeking

to understand the determinants of student learning. Utilizing parametric and nonparametric techniques,

we assess the impact of a heretofore relatively unexplored �input�in the educational process, homework,

on tenth grade test performance.

Our results indicate that homework is an important determinant of student achievement. Relative

to more standard spending related measures such as class size, extra homework appears to have a larger

and more signi�cant impact on math test scores. However, the e¤ects are not uniform across di¤erent

subpopulations. We �nd additional homework to be most e¤ective for high and low achievers. This

is further con�rmed by introducing stochastic dominance techniques into the examination of returns

between groups from a nonparametric regression. In doing so we were able to �nd that the returns for

both the high and low achievement groups uniformly dominate the returns for the average achievement

group.

Further, in contrast to time spent on homework, time spent in class is not a signi�cant contributor

16As a robustness check, we also divide the sample based on the eighth grade math score distribution to evaluate homework
e¤ectiveness. Consistent with the teacher�s overall class evaluation, we do not obtain any signi�cant e¤ect for average
achievers. The coe¢ cient estimates for low and high achievers are statistically signi�cant and large in magnitude. These
results are available upon request.
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to math test scores. This may suggest that learning by doing is a more e¤ective tool for improvement in

student achievement. Finally, parametric estimates of the educational production function overstate the

impact of schooling related inputs and thus raise concerns regarding the commonly used speci�cations

in the existing literature. Speci�cally, in all estimates, both the homework and class size coe¢ cients

from the parametric model map to the upper deciles of the nonparametric coe¢ cient distribution and

as a by-product parametric estimates understate the percentage of students with negative responses to

additional homework.

22



References

[1] Abadie, A. (2002), �Bootstrap Tests for Distributional Treatment E¤ects in Instrumental Variable

Models,�Journal of the American Statistical Association, 97, 284-292.

[2] Aitchison, J. and C.G.G. Aitken (1976), �Multivariate Binary Discrimination by Kernel Method,�

Biometrika, 63, 413-420.

[3] Aksoy, T. and C.R. Link (2000), �A Panel Analysis of Student Mathematics Achievement in the US

in the 1990s: Does Increasing the Amount of Time in Learning Activities A¤ect Math Achievement?�

Economics of Education Review, 19, 261-277.

[4] Altonji, J., T. Elder and C. Taber (2005), �Selection on Observed and Unobserved Variables: As-

sessing the E¤ectiveness of Catholic Schools,�Journal of Political Economy, 113, 151-184.

[5] Bertrand, M. and S. Mullainathan (2001), �Do People Mean What They Say? Implications for

Subjective Survey Data,�American Economic Review, 91, 67-72.

[6] Betts, J.R. (1997), �The Role of Homework in Improving School Quality,�Unpublished Manuscript,

Department of Economics, University of California, San Diego.

[7] Boozer, M.A. and C. Rouse (2001), �Intraschool Variation in Class Size: Patterns and Implications,�

Journal of Urban Economics, 50, 163-189.

[8] Eren, O. and D.L. Millimet (2006), �Time to Learn? The Organizational Structure of Schools and

Student Achievement,�Empirical Economics, forthcoming.

[9] Figlio, D.N. and M.E. Lucas (2003), �Do High Grading Standards A¤ect Student Performance?�

Journal of Public Economics, 88, 1815-1834.

[10] Fuchs, T. and L. Wößmann (2006), �What Accounts for International Di¤erences in Student Per-

formance? A Re-Examination Using PISA Data,�Empirical Economics, forthcoming.

23



[11] Goldhaber, D.B. and J.B. Brewer (1997), �Why Don�t Schools and Teachers Seem to Matter? As-

sessing the Impact of Unobservables on Educational Productivity,�Journal of Human Resource, 32,

505-523.

[12] Grogger, J. and E. Eide (1995), �Changes in College Skills and the Rise in the College Wage Pre-

mium,�Journal of Human Resources, 30, 280-310.

[13] Hanushek, E.A. (1979), �Conceptual and Empirical Issues in the Estimation of Educational Produc-

tion Functions,�Journal of Human Resources, 14, 351-388.

[14] � � �. (2003), �The Failure of Input Based Schooling Policies,�Economic Journal, 113, 64-98.

[15] � � �. (2005), �Teachers, Schools and Academic Achievement,�Econometrica, 73, 417-458.

[16] Henderson, D.J., A. Olbrecht and S. Polachek (2006), �Do Former Athletes Earn More at Work? A

Nonparametric Assessment,�Journal of Human Resources, 41, 558-577.

[17] Hoxby, C.M. (1999), �The Productivity of Schools and Other Local Public Goods Producers,�Jour-

nal of Public Economics, 74, 1-30.

[18] Hsiao, C., Q. Li and J. Racine (2003), �A Consistent Model Speci�cation Test with Mixed Categorical

and Continuous Data,�Journal of Econometrics, forthcoming.

[19] Kniesner, T.J. and Q. Li (2002), �Nonlinearity in Dynamic Adjustment: Semiparametric Estimation

of Panel Labor Supply,�Empirical Economics, 27, 131-48.

[20] Li, Q. and J. Racine (2004), �Cross-Validated Local Linear Nonparametric Regression,�Statistica

Sinica, 14, 485-512.

[21] � � �. (2006), Nonparametric Econometrics: Theory and Practice, Princeton University Press,

Princeton.

[22] Maasoumi, E., D.L. Millimet and V. Rangaprasad (2005), �Class Size and Educational Policy: Who

Bene�ts from Smaller Classes?�Econometric Reviews, 24, 333-368.
24



[23] Maasoumi, E., J. Racine and T. Stengos (2007), �Growth and Convergence: A Pro�le of Distribution

Dynamics and Mobility,�Journal of Econometrics, 136, 483-508.

[24] Murnane, R.J., J.B. Willett and F. Levy (1995), �The Growing Importance of Cognitive Skills in

Wage Determination,�Review of Economics and Statistics, 77, 251-266.

[25] N c
, Nonparametric software by Je¤ Racine (http://www.economics.mcmaster.ca/racine/).

[26] Neilson, W. (2005), �Homework and Performance for Time-Constrained Students,�Economics Bul-

letin, 9, 1-6.

[27] Racine, J. and Q. Li (2004), �Nonparametric Estimation of Regression Functions with Both Cate-

gorical and Continuous Data,�Journal of Econometrics, 119, 99-130.

[28] Rose, H. and J.R. Betts (2004), �The E¤ect of High School Courses on Earnings,�Review of Eco-

nomics and Statistics, 86, 497-513.

[29] Todd, P.E. and K.I. Wolpin (2003), �On the Speci�cation and Estimation of the Production Function

for Cognitive Achievement,�Economic Journal, 113, F3-F33.

[30] Wang, M.C. and J.V. Ryzin (1981), �A Class of Smooth Estimators for Discrete Estimation,�Bio-

metrika, 68, 301-309.

25



Table 1: Sample Statistics of  Key Variables

Mean SD Mean SD

10th Grade Math Test Score 51.306 9.850 52.225 9.547
Assigned Daily Hours of Homework 0.643 0.392 0.644 0.381
Weekly Hours of Math Class 3.922 1.033 3.972 1.022
8th Grade Math Test Score 51.488 9.931 52.354 9.901
Mother's Education
High School Dropout 0.133 0.340 0.127 0.333
High School 0.396 0.489 0.418 0.493
Junior College 0.136 0.343 0.139 0.349
College Less Than 4 Years 0.097 0.296 0.091 0.288
College Graduate 0.146 0.353 0.136 0.342
Master Degree 0.069 0.255 0.071 0.257
Ph.D., MD., etc 0.019 0.137 0.015 0.124
Family Size 4.606 1.400 4.565 1.315
Female 0.498 0.500 0.493 0.498
Race
Black 0.117 0.321 0.087 0.281
Hispanic 0.085 0.280 0.068 0.251
Other 0.042 0.202 0.031 0.173
White 0.753 0.499 0.813 0.389
Ever Held Back a Grade (1=Yes) 0.135 0.343 0.134 0.341
Ever Enrolled in a Gifted Class (1=Yes) 0.213 0.409 0.217 0.412
% of Teachers Holding a Graduate Degree 0.508 0.499 0.517 0.499
Teacher's Race
Black 0.050 0.218 0.036 0.186
Hispanic 0.017 0.129 0.016 0.126
Other 0.017 0.131 0.011 0.108
White 0.914 0.279 0.935 0.245
Teacher's Evaluation of the Overall Class Achievement
High Level 0.254 0.435 0.287 0.452
Average Level 0.410 0.491 0.415 0.492
Low Level 0.236 0.424 0.197 0.398
Widely Differing 0.099 0.299 0.100 0.300
Class Size 23.521 7.315 23.442 7.278
Number of Observations 6913 3733

NOTES: Weighted summary statistics are reported. The variables are only a subset of those utilized in the analysis. The remainder are excluded in the interest of brevity. The
full set of sample statistics are available upon request.

Public School Math Sample Regression Sample
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Table 2: Means and Standard Deviations of 10th Grade Math Test Scores by Achievement Levels

Teacher's Evaluation of the Overall Class Achievement

High Achievement

Average Achievement

Low Achievement

Widely Differing

NOTE: Achievement levels are based on teachers' evaluations. See text for further details.

SD Within­Class SD

59.769 7.517

51.795

43.863

49.995

Mean

8.142

6.618

9.904

3.577

4.177

3.025

4.347
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Table 3: Parametric Estimates of 10th Grade Math Test Scores on Homework

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Homework 4.011 3.474 0.905 0.768 0.825 0.921 0.919 0.453 1.136
(0.586) (0.505) (0.213) (0.202) (0.229) (0.229) (0.229) (0.215) (0.429)

Homework Squared … .. … .. … .. … .. … .. … .. … .. … .. ­0.192
(0.098)

8th Grade Math Test Score … .. … .. 0.792 0.732 0.725 0.723 0.721 0.661 0.660
(0.008) (0.010) (0.011) (0.011) (0.011) (0.012) (0.012)

Class Size … .. … .. … .. … .. … .. … .. 0.025 0.014 0.014
(0.015) (0.014) (0.014)

Weekly Hours of Math Class … .. … .. … .. … .. … .. … .. 0.009 ­0.034 ­0.032
(0.112) (0.109) (0.109)

R² 0.027 0.232 0.762 0.778 0.825 0.826 0.826 0.838 0.839

Other Controls:
Demographic and Family Characteristics No Yes Yes Yes Yes Yes Yes Yes Yes
Endowed Ability No No No Yes Yes Yes Yes Yes Yes
School Fixed Effects No No No No Yes Yes Yes Yes Yes
Teacher Characteristics No No No No No Yes Yes Yes Yes
Class Characteristics No No No No No No Yes Yes Yes
Teacher's Evaluation of the Overall Class Achievement No No No No No No No Yes Yes

NOTE: White standard errors are reported in paranthesis. See text for definition of the variables.

Coefficient
(Standard Error)
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Table 4: Nonparametric Estimates of 10th Grade Math Test Scores on Homework

Mean

10%

20%

30%

40%

50%

60%

70%

80%

90%

R²

NOTES: Standard errors are obtained via bootstrapping. Estimations control for individual, family, endowed ability
teacher and classroom characteristcs as well as school fixed effects.

1.847
(0.567)

0.963
(0.426)
1.308

(0.432)

0.881

0.513
(0.345)
0.727

(0.398)

0.108
(0.543)
0.324

(0.296)

­0.589
(0.352)
­0.165
(0.531)

Coefficient
(Standard Error)

0.593
(0.523)

Table 5: Quartile Estimates for Selected Covariates

Mean Q1 Q2 Q3

8th Grade Math Test Score 0.722 0.658 0.724 0.785
(0.040) (0.023) (0.029) (0.023)

Class Size ­0.006 ­0.047 ­0.016 0.029
(0.036) (0.029) (0.026) (0.085)

Weekly Hours of Math Class ­0.229 ­0.542 ­0.222 0.075
(0.301) (0.230) (0.387) (0.805)

NOTE: Standard errors are obtained via bootstrapping.

Coefficient
(Standard Error)
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Table 6: Parametric/Nonparametric Estimates of 10th Grade Math Test Scores on Homework  by Achievement Level

Average Achievement Low Achievement Widely Differing

Nonparametric Estimates

Mean 0.302 0.755 0.610
(0.566) (0.413) (1.551)

0.10 ­0.757 ­0.608 ­0.728
(0.486) (1.864) (0.810)

0.20 ­0.454 ­0.103 ­0.185
(0.537) (0.493) (1.194)

0.30 ­0.221 0.137 0.160
(0.472) (0.613) (0.942)

0.40 0.011 0.362 0.488
(0.556) (0.950) (0.885)

0.50 0.231 0.555 0.808
(0.735) (0.526) (1.308)

0.60 0.453 0.794 1.090
(0.538) (0.401) (0.895)

0.70 0.708 1.024 1.522
(0.566) (0.599) (0.763)

0.80 1.019 1.414 1.886
(0.648) (0.767) (1.051)

0.90 1.490 2.042 2.466
(0.788) (0.676) (1.006)

Parametric Estimates

Homework 0.177 2.336 1.023
(0.451) (1.587) (1.709)

Homework Squared N/A ­0.526 N/A
(0.312)

NOTES: Standard errors are obtained via bootstrapping for the nonparametric estimates and White standard errors are reported for the parametric estimates. Homework squared term
is excluded unless it is significant at 10 % level or better. Estimations control for individual, family, endowed ability, teacher and classroom characteristics as well as school fixed effects.

(0.364)
0.553

N/A

(0.489)

1.378

2.254
(0.531)

0.413

Coefficient

(0.575)
1.788

(0.447)
1.100

(0.390)
0.715

(0.419)
0.901

0.832

(Standard Error)

High Achievement

0.285
(0.728)

(0.397)
0.072

(0.476)

(0.578)
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Table 7: Quartile Estimates for Selected Covariates by Achievement Level

Mean Q1 Q2 Q3 Parametric

High Achievement

8th Grade Math Test Score 0.646 0.593 0.644 0.690 0.587
(0.030) (0.022) (0.031) (0.031) (0.022)

Class Size ­0.031 ­0.055 ­0.034 ­0.010 ­0.031
(0.036) (0.028) (0.034) (0.034) (0.030)

Weekly Hours of Math Class ­0.125 ­0.271 ­0.099 0.095 ­0.078
(0.188) (0.258) (0.211) (0.184) (0.273)

Average Achievement

8th Grade Math Test Score 0.746 0.698 0.743 0.790 0.675
(0.026) (0.023) (0.064) (0.037) (0.021)

Class Size ­0.012 ­0.047 ­0.020 0.008 ­0.001
(0.030) (0.034) (0.028) (0.038) (0.027)

Weekly Hours of Math Class ­0.510 ­0.756 ­0.476 ­0.253 ­0.237
(0.258) (0.503) (0.208) (0.227) (0.200)

Low Achievement

8th Grade Math Test Score 0.752 0.704 0.756 0.809 0.623
(0.050) (0.065) (0.037) (0.034) (0.043)

Class Size 0.054 0.013 0.051 0.090 0.124
(0.046) (0.036) (0.036) (0.035) (0.064)

Weekly Hours of Math Class 0.029 ­0.332 ­0.007 0.337 0.482
(0.337) (0.371) (0.461) (0.439) (0.360)

Widely Differing

8th Grade Math Test Score 0.786 0.713 0.789 0.855 0.685
(0.044) (0.057) (0.047) (0.038) (0.064)

Class Size ­0.021 ­0.090 ­0.017 0.052 ­0.000
(0.060) (0.066) (0.125) (0.011) (0.090)

Weekly Hours of Math Class 0.079 ­0.347 0.080 0.539 ­0.585
(0.288) (0.419) (0.397) (0.284) (0.730)

NOTE:  Standard errors are obtained via bootstrapping for the nonparametric estimates and White standard errors are reported for
the parametric estimates.

Coefficient
(Standard Error)
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Table 8: Stochastic Dominance Tests of the Coefficient Distributions

Equality of  Distributions First Order Stochastic Dominance

p­values p­values

High Achievement/Average Achievement 0.000 0.906

High Achievement/Low Achievement 0.000 0.165

High Achievement/Widely Differing 0.000 0.000

Low Achievement/Average Achievement 0.000 0.961

Low Achievement/Widely Differing 0.000 0.000

Widely Differing/Average Achievement 0.000 0.909

NOTES: Probability values are obtained via bootstrapping. The null hypothesis is rejected if the p­value is smaller than some significance level α (0<α<1/2).
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Figure 1: Cumulative Distribution Functions of the Estimated Homework Coe¢ cients from the General-

ized Kernel Estimation Procedure by Achievement Level
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Appendix :

Table A1: Sample Statistics of Key Variables for Students with Negative Respsonses to Additional Homework

Mean SD

10th Grade Math Test Score 49.586 8.566
Assigned Daily Hours of Homework 0.659 0.470
Weekly Hours of Math Class 3.867 1.114
8th Grade Math Test Score 48.991 8.240
Mother's Education
High School Dropout 0.142 0.349
High School 0.493 0.500
Junior College 0.114 0.318
College Less Than 4 Years 0.078 0.269
College Graduate 0.094 0.292
Master Degree 0.063 0.243
Ph.D., MD., etc 0.012 0.111
Family Size 4.575 1.322
Female 0.537 0.498
Race
Black 0.126 0.332
Hispanic 0.076 0.266
Other 0.023 0.151
White 0.773 0.418
Ever Held Back a Grade (1=Yes) 0.126 0.333
Ever Enrolled in a Gifted Class (1=Yes) 0.154 0.361
% of Teachers Holding a Graduate Degree 0.585 0.492
Teacher's Race
Black 0.061 0.239
Hispanic 0.020 0.142
Other 0.007 0.084
White 0.910 0.285
Teacher's Evaluation of the Overall Class Achievement
High Level 0.097 0.296
Average Level 0.627 0.483
Low Level 0.191 0.393
Widely Differing 0.083 0.277
Class Size 23.891 6.945
Number of Observations 966

NOTES: Weighted summary statistics are reported. The variables listed are only a subset of those utilized in the analysis. The remainder
are excluded in the interest of brevity. The full set of sample statistics are available upon request.

Negative Response Sample
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