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Abstract

We consider a metric entropy capable of detecting deviations from
symmetry. A consistent test statistic is constructed from an integrated
normed difference between two density functions estimated using ker-
nel methods. The null distribution (symmetry) is obtained by resam-
pling from an artificially lengthened series constructed from a rotation
of the original series about its mean (median, mode). Simulations
demonstrate that the test has correct level and power in the direc-
tion of interesting alternatives, while applications to updated Nelson
& Plosser (1982) data demonstrate its potential power gains relative
to existing tests.

1 Overview

Testing for asymmetric behavior present in a series or in conditional pre-

dictions thereof has a rich history dating to the pioneering work by Crum

(1923), Mitchell (1927), and Keynes (1936) who examined potential asym-

metries present in a number of macroeconomic series, while interest contin-

ues through the present day as exemplified by the recent work of Timmer-

mann & Perez-Quiros (2001) and Belaire-Franch & Peiro (2003). Some re-

searchers subdivide asymmetry into categories such as sharpness, steepness,
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and deepness (see McQueen & Thorley (1993)). Though such categoriza-

tions of asymmetry may be of interest in their own right, our focus will rest

upon consistent tests of asymmetries of any sort.

2 Unconditional and Conditional Symmetry

Consider a stationary series {Yt}
T
t=1. Let µy = E[Yt], let f(y) denote the

density function of the random variable Yt, let Ỹt = −Yt + 2µy denote a

rotation of Yt about its mean, and let f(ỹ) denote the density function of

the random variable Ỹt. Note that if µy = 0 then Ỹt = −Yt, though in

general this will not be so.

We say a series is symmetric about the mean (median, mode) if f(y) ≡

f(ỹ) almost surely. Tests for asymmetry about the mean therefore naturally

involve testing the following null:

H0 : f(y) = f(ỹ) for all y. (1)

One questions why the mean has received particular attention when symme-

try about the mode or median would seem a more natural characterization.

One could of course clearly rotate a distribution around these measures of

central tendency, and for what follows one simply would replace the mean

with the appropriate statistic.

Tests for the presence of conditional asymmetry can be based upon

standardized residuals from a regression model (see Belaire-Franch & Peiro

(2003)). Let

Yt = h(Ωt, β) + σ(Ω, λ)et, (2)

denote a general model for this process, where Ωt is a conditioning infor-

mation set, σ(Ω, λ) the conditional standard deviation of Yt, and et is a

zero mean unit variance error process independent of the elements of Ωt. If

µe = 0, then tests for conditional asymmetry involve the following null:

H0 : f(e) = f(−e) for all e. (3)
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Bai & Ng (2001) construct tests based on the empirical distribution of

et and that of −et. Belaire-Franch & Peiro (2003) apply this and other tests

to the Nelson & Plosser (1982) data updated to include 1988.

3 An Entropy-Based Test of Asymmetry

Granger &Maasoumi (1993) considered a normalization of the Bhattacharya-

Matusita-Hellinger measure of dependence given by

Sρ =
1

2

∫

∞

−∞

(

f
1/2
1 − f

1/2
2

)2

dx (4)

where f1 = f(y) is the marginal density of the random variable Y and

f2 = f(ỹ) that of Ỹ , Ỹ being a rotation of Y about its mean.

We consider a kernel-based implementation of equation (4) for the pur-

poses of testing the null of symmetry. Rather than adopt asymptotic-based

testing procedures, we elect to use a resampling approach. We do so mainly

because critical values obtained from the asymptotic null distribution do

not depend on the bandwidth, while the value of the test statistic depends

directly on the bandwidth due in part to the fact that the bandwidth is

a quantity which vanishes asymptotically. This is a serious drawback in

practice, since the outcome of such asymptotic-based tests tends to be quite

sensitive to the choice of bandwidth. This has been noted by a number

of authors including Robinson (1991) who noted that “substantial variabil-

ity in the [test statistic] across bandwidths was recorded”, which would be

most troubling in applied situations due, in part, to numerous competing

approaches for data-driven bandwidth choice (see Jones, Marron & Sheather

(1996) for an excellent survey article on bandwidth selection for kernel den-

sity estimates).

Consider the sample of size 2T given by z = {Y1, . . . , YT , Ỹ1, . . . , ỸT }.

Though the distribution of Yt may be asymmetric, the distribution of z is

symmetric by construction. We may therefore construct the empirical dis-

tribution of equation (4) under the null of symmetry by noting that samples

drawn with replacement from z will be symmetric almost surely and recom-
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puting equation (4) for B resamples drawn with replacement from z. Given

the set of B statistics computed under the null, we may then compute per-

centiles and use these as the basis for a test of asymmetry. Alternatively, we

can compute empirical power via the proportion of the resampled statistics

exceeding the actual statistic.

4 Finite-Sample Behavior

We now consider the finite-sample performance of the kernel-based imple-

mentation of the test. For what follows, we set the number of bootstrap repli-

cations to B = 99, and let the sample size assume values n = 50, 100, 200.

The bandwidth is selected via likelihood cross-validation (Silverman (1986,

page 52)) which produces density estimators which are “optimal” according

to the Kullback-Leibler criterion. Should one wish to use one of the many

alternative methods of bandwidth selection (e.e. see Jones et al. (1996)), one

may do so at this stage with no loss of generality.

We consider four DGP’s, N(120, 240), χ2(120), χ2(80), χ2(40), χ2(20),

χ2(10), χ2(5), and χ2(1). Figure 1 plots each DGP to allow the reader to

get a sense of the range of distributions considered, from the symmetric

N(µ, σ2) to the range of χ2 distributions considered.

Table 1 summarizes the finite-sample performance of the proposed test

conducted at nominal levels of α = 0.10, 0.05, 0.01.

We observe from Table 1 that the test has correct level. Column 2

presents results for the symmetric N(µ, σ2) distribution for levels α =

0.10, 0.05, 0.01. Empirical level does not differ from nominal for any of the

sample sizes considered. As the degree of asymmetry increases (moving from

column3 through 5), we observe that power increases as it also does when

the sample size increases.
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Figure 1: Simulated distributions. The distributions are, from right to left,
N(120, 240), χ2(120), χ2(80), χ2(40), χ2(20), χ2(10), χ2(5), and χ2(1).

5 Testing for Asymmetry in U.S. Macroeconomic

Time Series

Tables 2 and 3 present results for the proposed Sρ test for unconditional and

conditional asymmetry for the updated Nelson & Plosser (1982) data. For

the unconditional series we simply rotate the series about its mean, while for

the conditional series we employ an AR(P) process with lag order selected

via SIC as in Belaire-Franch & Peiro (2003), where et = Yt−δ̂0−
∑p

j=1 δ̂iYt−j .

Should the lag order P = 0, the test statistics and percentiles for conditional

symmetry will be equivalent to those for the unconditional series (ignoring

bootstrap resampling error).
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Table 1: Empirical rejection frequencies at levels α = 0.10, 0.05, 0.01. The
degree of asymmetry increases as we go from column 2 (symmetric) to
columns 3–5. Column 2 reflects the empirical level of the test, columns
3–5 empirical power.

n N(µ, σ2) χ2(120) χ2(80) χ2(40) χ2(20) χ2(10) χ2(5) χ2(1)

α = 0.10
50 0.08 0.12 0.21 0.32 0.43 0.58 0.86 0.94
100 0.10 0.22 0.30 0.46 0.68 0.88 0.99 1.00
200 0.09 0.31 0.50 0.73 0.93 1.00 1.00 1.00

α = 0.05
50 0.04 0.07 0.12 0.18 0.28 0.42 0.70 0.86
100 0.06 0.13 0.22 0.34 0.54 0.81 0.98 1.00
200 0.03 0.19 0.36 0.59 0.86 1.00 1.00 1.00

α = 0.01
50 0.01 0.02 0.03 0.06 0.12 0.18 0.40 0.66
100 0.03 0.04 0.07 0.17 0.30 0.56 0.85 0.95
200 0.01 0.12 0.18 0.42 0.71 0.96 1.00 1.00

6 Conclusion

We present a simple robust entropy-based test for asymmetry along with a

resampling method for obtaining its null distribution. Finite sample perfor-

mance is examined, while an application to the updated Nelson & Plosser

(1982) data indicates power gains relative to the recently proposed test of

Bai & Ng (2001).
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A Series and Residual Plots
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Figure 2: Raw series
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Figure 3: Series residuals: SIC AR(P), no differencing
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Figure 4: Series residuals: AR(1), no differencing
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Figure 5: Series residuals: AR(2), no differencing
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