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1 Introduction

Economic agents often contribute sequentially towards a public good or a project

of common interest. In many cases, the order in which the agents contribute is

determined exogenously. National governments may commit resources and defence

forces to war efforts in a hierarchical order depending on individual stakes in the

conflict. R&D investment by private firms with shared research output (as in

open source software development or research on mapping of genomes) sometimes

follows the scientific order of discoveries with firms specializing in “basic” research

moving earlier (e.g., Bessen and Maskin, 2006).1 In team production, participants

can be deliberately induced to exert efforts in an exogenous sequential order under

full observability of efforts (Winter, 2006). Political lobbying or contributions to

reduction of global environmental damage by countries may follow a specific order

according to perceived leader-follower roles. Finally, contributions to charities by

donors during fundraising may follow the order in which the donors are contacted.

In many of the examples discussed above, early contributions are observed by,

or revealed to, other contributors before they make their own contributions. Gov-

ernments announce their own commitments to war efforts or disaster relief. In

independent R&D ventures with shared output, leading firms may publicly high-

light their investment (or make their research output public) so that the follower

firms make investment decisions based on this knowledge. During fundraising cam-

paigns, charities announce donations as they come in.

When contributions are not observed till the contribution process has ended,

the strategic interaction between potential contributors is identical to that in a

simultaneous move game. On the other hand, the ability to observe actions taken by

prior contributors generates a sequential game of voluntary contributions. A natural

question that arises in this context is the effect of observability of contributions on

the strategic incentives of voluntary contributors and on the eventual provision of

the public good.

Varian (1994) has argued that in sequential games of voluntary contribution

to a pure public good where the order of moves is exogenous, the ability of late

movers to observe the contributions made by early movers aggravates the free rider

problem. This is particularly striking if each agent has only one chance to con-

1Bessen and Maskin analyze the merits of sequential discoveries with public good features in
software developments (due to complementarity between successive innovations).
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tribute and cannot add to her current contribution later (i.e., early movers can

credibly pre-commit to a certain level of contributions); in such situations, the to-

tal contribution generated is never greater and can be significantly smaller relative

to the game where contributions are not revealed or observed (i.e., a simultaneous

contribution game). An important assumption behind Varian’s result is complete

information – agents know each others’ valuations of the public good. Intuition

suggests that if agents do not know each others’ valuations (the contribution game

is one of incomplete information), then early movers who commit to low contribu-

tions (in order to free ride on late movers) also face the risk that late movers may

not value the public good as much and thus, under-provide it relative to what the

early movers may consider acceptable. Furthermore, when agents cannot observe

others’ contributions (as in a simultaneous move game), a contributor with fairly

low valuation has an incentive to contribute very little as she gambles on the event

that other contributors have much higher valuations and will contribute generously;

this, in turn, means that in states of the world where a large proportion of con-

tributors are actually ones with very low valuations, the total contribution in a

simultaneous move game is excessively small relative to what these low valuation

contributors would have provided under complete information. When contributions

are sequentially observed this problem is partially redressed, because later contrib-

utors make their donations knowing what the earlier ones have contributed and do

not need to guess their contributions.

This paper develops the above intuition to show that under incomplete in-

formation about individual (independent) private valuations for the public good,

a sequential contribution game may actually generate higher total expected con-

tribution than the simultaneous move contribution game.2 We establish this in a

conventional economic framework (as in Varian, 1994) where contributors care only

about the total provision of the public good (rather than individual contribution

levels of other agents), thus ruling out snob effects, warm glow and more generally,

complementarities between individual contributions. This distinguishes our work

from Romano and Yildirim (2001) who show that sequential contribution may in-

crease total contributions if utility depends not just on total contributions but also

2In a brief section, Varian (1994) discusses the incomplete information game considered by us
and argues that incomplete information about the second-mover’s utility leads the first-mover to
contribute less than what she would under complete information. He does not compare sequential
and simultaneous contributions under incomplete information.
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on individual contribution levels. Further, there is no non-convexity in the pro-

duction technology. This rules out the presence of increasing returns or threshold

effect in the production technology; earlier, Andreoni (1998) had shown that in

the presence of such effects, learning about increased contribution of early movers

may increase the marginal productivity of followers’ contributions, thus creating

advantages for a sequential contribution format.3,4

We assume that agents have quasi-linear utility and allow for arbitrary number

of agents and fairly general distribution of types. We show that, under certain

sufficient conditions that include concavity of the marginal utility from the public

good, the expected total contribution generated in a perfect Bayesian equilibrium

of a sequential move contribution game is at least as large as that in a Bayes-Nash

equilibrium of the simultaneous move contribution game if the agent who moves

last in the sequential game is one who makes a strictly positive contribution in the

simultaneous move game for every possible realization of her type. We obtain this

result, even though each agent has only one chance to contribute and can therefore

pre-commit to contributions;5 note that under complete information, early movers

have the greatest ability to free ride on late movers precisely when agents have

such commitment ability. Further, if the equilibrium in the sequential game is one

where some contributor who moves prior to the last mover, makes a strictly positive

3One may view discrete public goods (such as a 0-1 public good that is either provided or
not provided) as special cases of such threshold technology. Admati and Perry (1991) and Marx
and Matthews (2000) respectively analyze the provision of discrete public goods (under complete
information) in an alternating offer voluntary contributions format and an unrestricted repeated
contributions format. Menezes et al. (2001), and Agastya et al. (2007) analyze simultaneous
contribution to discrete public goods under incomplete information about private valuations.

4Vesterlund (2003) considers a common-value public good model with uncertainty about the
common value. By announcing contributions and inducing a sequential move game, a high-
quality charity is able to raise more funds. Ours is an independent private-values model. Other
explanations of contribution announcement by charities such as wealth signaling and prestige
motives (Glazer and Konrad, 1996; Harbaugh, 1998) do not explain why announcements are
made during the contribution process rather than at the end of it.

5Winter (2006) examines incentive design in team production problem under complete infor-
mation with an exogenously given sequential order of tasks where the tasks performed by agents
are perfectly complementary. In our model, the participants’ contributions are perfect substitutes
(rather than complements) and there are no direct, differential incentives for participants except
that all participants get equal access to the total public good produced. Under incomplete infor-
mation, our intuition favoring sequential contributions may carry over to some team production
technologies with less than perfect complementarity.
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contribution with strictly positive probability or alternatively, if the marginal utility

from the public good is strictly concave, then the sequential game generates strictly

higher expected total contribution. In an example, with two-agents and two-types,

we show that some of these sufficient conditions are not necessary for the sequential

game to generate higher contribution.

The sequential move game considered in this paper is one where every agent

perfectly observes the individual contributions made by earlier contributors before

making her own contribution decision. However, as we argue informally at the end

of section 4, our results are equally valid for a modified version of the sequential

move game where each contributor observes only the sum of contributions made by

earlier contributors, but not necessarily their individual contributions.

In an earlier paper (Bag and Roy, 2008), we consider a multistage game of

contribution to a public good with all agents having the option to contribute in

all stages. There we show that under incomplete information about the agents’

(independent private) valuations of the public good, the expected total contribution

is higher if the contributions made at each stage are observed before the next

stage; the economic reasoning behind this is based on the possibility of revelation

of the private preferences of contributors through their actions and the incentive

of higher valuation contributors to hide information about their true preferences

as it may make them more vulnerable to free-riding by other agents in subsequent

stages of the game. Such incentives are not important in voluntary contribution

processes where agents cannot contribute repeatedly; the current paper focuses on

these environments by assuming that agents move sequentially with each agent

having only one turn to contribute so that later movers cannot free ride on earlier

contributors, and contributors have no incentive to either hide or reveal their private

valuation of the public good.

There is a substantial literature on voluntary provision of public goods under

incomplete information that focus on inefficiencies that arise due to incompleteness

of information.6 We do not concern with the efficiency or normative issues; instead,

we offer an incomplete information based explanation of why sequential contribution

schemes may be better for the total provision of the public good.

The next section presents the model. In section 3 we analyze the simultaneous

contribution game, followed by an analysis of the sequential contribution game in

6See Bliss and Nalebuff (1984), Palfrey and Rosenthal (1988), Fershtman and Nitzan (1991),
Gradstein (1992), Vega-Redondo (1995), etc.
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section 4. In section 5, we state our main results comparing the expected contri-

butions in the sequential and simultaneous move games and in particular, outline

general conditions under which the sequential form generates higher expected total

contribution. Section 6 elaborates further on these conditions. Section 7 discusses

the two-agents, two-types case. The appendix contains some proofs not included

in the main text.

2 The model

N > 1 agents contribute voluntarily to a public good. Each agent i ∈ {1, ..., N}
has a budget constraint wi > 0. Agent i’s payoff depends on the total contribution

of all agents, her own contribution and her own type, and is given by

ui(gi, g−i, τi) = τiVi(gi + g−i) + wi − gi,

where gi ≥ 0 is i’s contribution, g−i is the total contribution of all other agents j 6= i,

and τi is a private preference parameter of agent i that affects her marginal utility

from consumption of the public good, is known only to agent i and is interpreted

as the “type” of agent i. It is common knowledge that each agent i’s type τi is an

independent random draw from a probability distribution with distribution function

Fi and compact support Ai ⊂ R++. Let τ i and τ i be the lowest and highest possible

types of agent i defined by

τ i = min{τ : τ ∈ Ai}, τ i = max{τ : τ ∈ Ai}.

Assumption 1. ∀i ∈ {1, ..., N}, Vi(.) is continuously differentiable, concave and

non-decreasing on R+, with Vi(0) = 0, τ iV
′
i (0) > 1 and τ iV

′
i (wi) < 1.

Define ∀i:
zi = sup{x ≥ 0 : τ iV

′
i (x) = 1}.

Under Assumption 1, 0 < zi < wi. It is easy to check that agent i would never

contribute in excess of zi in any contribution game, whatever be her type. This

allows us to drop wi and write agent i’s payoff function simply as

ui = τiVi(gi + g−i)− gi.

Define

G =
N∑
i=1

zi > 0.
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Assumption 2. Vi(.) is strictly concave on [0, G], ∀i ∈ {1, ..., N}.

Under Assumptions 1 and 2, every agent i of every possible type τi ∈ Ai has a

unique standalone contribution xi(τi) ∈ (0, wi) defined by:

xi(τi) = arg max
gi

ui(gi, 0, τi),

satisfying τiV
′
i (xi(τi)) = 1. (1)

It is easy to check that xi(τi) is strictly increasing in τi, implying:

zi = xi(τ i).

The expected standalone contribution of agent i, denoted hereafter by θi, is given

by:

θi =

∫
Ai

xi(τi) dFi(τi).

Also, since Vi(.) is non-decreasing, V ′i (.) ≥ 0. Assumption 2 therefore implies

that V ′i (G) > 0 on [0, G). Finally, we impose:

Assumption 3. V ′i (.) is concave on [0, G].

Assumption 3 is an important technical restriction that will be useful in compar-

ing expected total contributions under sequential and simultaneous move games.7

Note that we do not require that the function V ′i (.) be concave or strictly decreasing

on the entire positive real line.

While our analysis is presented for a continuously variable public good, by

setting Vi(G) = V (G) for all i and interpreting V (G) as the ‘probability of success’

of a public project with binary outcomes (“success” or “failure”) that depends on

total investment G, the analysis can be easily applied to a discrete public good

7A simple example that satisfies all of the above assumptions is the situation where all agents
have identical utility functions and distribution of types and for all i = 1, ..., N, Vi(.) is the
quadratic function

Vi(G) =

{
αG− 1

2G
2, 0 ≤ G ≤ α, α > 0

1
2α

2, G > α,

with the additional restrictions that τ i = τ , τ i = τ satisfy

1
ατ

< 1,
1
ατ
≥ 1− 1

N
.
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setting;8 in that case, τi > 0 is agent i’s deterministic utility if the project succeeds,

while the utility obtained when the project fails is normalized to zero.

We will compare two game forms – an N -stage sequential contribution game and

a simultaneous contribution game – and the solution concepts are Perfect Bayesian

Equilibrium and Bayesian-Nash Equilibrium, respectively. In the sequential con-

tribution game, the agents contribute in an exogenous order and the contribution

amounts become known as and when they are made. Each agent is allowed to con-

tribute only once and is not allowed to add to her contribution at a later stage. In

the simultaneous contribution game, each agent contributes without any knowledge

of other agents’ contributions. We confine attention to pure strategy equilibria.

The contribution games are compared according to the (ex ante) expected total

contributions made by all N agents i.e., the expected provision of public good.

3 Simultaneous contribution game

First, we analyze the simultaneous contribution game. Let yi(τi) denote the equi-

librium contribution of agent i of type τi ∈ Ai, i ∈ {1, ..., N} and y−i(τ−i) =∑
j 6=i yj(τj) where τ−i ∈ Πj 6=iAj is the vector of types for agents other than agent i.

Then, yi(τi) is a solution to the following expected utility maximization problem:

max
y≥0

τiEτ−i
[Vi(y + y−i(τ−i))]− y. (2)

In what follows, we denote by F−i(τ−i) the joint distribution of τ−i. We start with

a simple observation that follows directly from the definitions of xi(τi) and G:

Lemma 1. Consider any Bayesian-Nash equilibrium of the simultaneous move con-

tribution game where yi(τi) is the contribution made by agent i of type τi. Then,

yi(τi) ≤ xi(τi) ∀τi ∈ Ai, ∀i ∈ {1, ..., N}, and the total contributions generated

N∑
i=1

yi(τi) ≤ G with probability one.

Below we derive a much sharper bound for the expected total contribution, but

first the following technical result should be noted (see the Appendix for the proof).

8Consider any density function h(z) with support on the positive real line that is weakly
decreasing and is, in addition, strictly decreasing and concave over [0, G]. Then, taking V (x) =∫ x
0
h(z) dz as the probability of success of the project satisfies our assumptions.
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Lemma 2. Consider the simultaneous move game and fix an agent index i. If for

some j 6= i, Pr{τj : yj(τj) > 0} > 0, then the probability distribution of the random

variable y−i =
∑

j 6=i yj is non-degenerate.

Lemma 3. (An upper-bound on expected total contribution) Consider any

Bayesian-Nash equilibrium of the simultaneous move contribution game where for

some agent i, yi(τi), the equilibrium contribution of agent i, is strictly positive τi-

almost surely i.e., Pr{τi : yi(τi) > 0} = 1.

(i) Then,
N∑
k=1

{∫
yk(τk) dFk(τk)

}
≤ θi (3)

i.e., the expected total contribution by all agents generated in this equilibrium does

not exceed the expected standalone contribution of agent i.

(ii) If, in addition, V ′i (G) is strictly concave on [0, G] and there exists some agent

j 6= i such that Pr{τj : yj(τj) > 0} > 0, then the inequality in (3) holds strictly i.e.,

the expected total contribution by all agents generated in this equilibrium is strictly

less than the expected standalone contribution of agent i.

Proof. Using the first-order condition of the maximization problem (2) faced by

agent i of type τi and the hypothesis that yi(τi) > 0 τi-almost surely, we have:

τi

∫
V ′i (yi(τi) + y−i(τ−i)) dF−i(τ−i)

= τiEτ−i
[V ′i (yi(τi) + y−i(τ−i))]

= 1, τi-almost surely, (4)

First, we establish (i). Since (using Assumption 3) V ′i (.) is concave on [0, G] and

from Lemma 1, yi(τi)+y−i(τ−i) ∈ [0, G] almost surely, we have by Jensen’s inequal-

ity

τiV
′
i (yi(τi) + Eτ−i

{y−i(τ−i)}) ≥ 1, τi-almost surely

so that using (Assumption 2) concavity of Vi(.) and (1) it follows that

yi(τi) + Eτ−i
{y−i(τ−i)} ≤ xi(τi), τi-almost surely

and integrating with respect to the distribution of agent i’s type we have:

Eτi{yi(τi)}+ Eτ−i
{y−i(τ−i)} ≤ Eτi{xi(τi)} = θi,
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establishing part (i) of the lemma.

Now, consider part (ii) of the lemma. It is easy to check from the first-order

conditions of agent j’s maximization problem that given y−j(τ−j), the equilibrium

contribution yj(τj) of agent j is non-decreasing in the type τj of agent j. Thus, if

τ < τ ′, τ, τ ′ ∈ Aj and yj(τ) > 0, then yj(τ
′) > 0. Further, using (4),

1 = τ

∫
V ′j (yj(τ) + y−j(τ−j)) dF−j(τ−j)

< τ ′
∫
V ′j (yj(τ) + y−j(τ−j)) dF−j(τ−j)

so that yj(τ
′) > yj(τ). Since Pr{τj : yj(τj) > 0} > 0 for some j 6= i, the total

contribution of agents other than agent i, y−i(τ−i), is a non-degenerate random

variable (by Lemma 2). Therefore, using strict concavity of V ′i (.) on [0, G] (assumed

in part (ii) of the lemma), the fact that yj(τj) + y−j(τ−j) ∈ [0, G] almost surely

(Lemma 1), and Jensen’s inequality, we have

τiV
′
i (yi(τi) + Eτ−i

{y−i(τ−i)}) > 1, τi-almost surely

so that using strict concavity of Vi(.) on [0, G] (Assumption 2) and (1) it follows

that

yi(τi) + Eτ−i
{y−i(τ−i)} < xi(τi), τi-almost surely

and integrating with respect to the distribution of agent i’s type we have:

Eτi{yi(τi)}+ Eτ−i
{y−i(τ−i)} < Eτi{xi(τi)} = θi,

establishing part (ii) of the lemma. Q.E.D.

The next result follows immediately from Lemma 3:

Corollary 1. Suppose there is a Bayesian-Nash equilibrium of the simultaneous

move contribution game where for all i ∈ {1, ..., N}, yi(τi), the equilibrium contri-

bution of agent i of type τi, satisfies yi(τi) > 0, τi-almost surely. Then, the expected

total contribution in this equilibrium does not exceed min{θi : i = 1, ..., N}. If, fur-

ther, V ′i (G) is strictly concave on [0, G] for all i ∈ {1, ..., N}, then the expected

total contribution in this equilibrium is strictly less than min{θi : i = 1, ..., N}.
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4 Sequential contribution game

In this section, we analyze the sequential contribution games where agents con-

tribute in an exogenous order of moves with each agent contributing only once.

Let

P = {p = (p1, ..., pN) : (p1, ..., pN) is a permutation of (1, ..., N)}.

For each p = (p1, ..., pN) ∈ P , we can define an N -stage sequential contribution

game Γ(p) where agent pi contributes (only) in the i-th stage after observing con-

tributions made in all previous stages 1, ..., i− 1.

We first specify a lower bound on the total contribution that depends on the

last mover’s type:

Lemma 4. In any perfect Bayesian equilibrium of Γ(p), for each possible realiza-

tion τ of the type of the last mover pN , the total contribution generated is at least as

large as xpN
(τ), her standalone contribution for type τ , and the expected total con-

tribution generated in the game is at least as large as θpN
, the expected standalone

contribution of agent pN .

Proof. The proof follows from the fact that if z ≥ 0 is the total contribution of

agents in the first (N − 1) stages, then in the last stage of the game, the unique

optimal action of agent pN of type τ is to contribute max{0, xpN
(τ)− z}. Q.E.D.

Next, we argue that as long as the total contribution generated in the first (N−1)

stages is strictly positive with some probability, the expected total contribution

generated in the sequential game is strictly higher than the expected standalone

contribution of the last mover. The main argument here is that earlier contributors

know that even if they contribute zero, the last mover will ensure that the total

contribution is at least as large as her standalone contribution (depending on her

realized true type). If the total contribution on the equilibrium path in the first

(N − 1) stages is below the standalone level for the lowest type of the contributor

in stage N , then the last contributor who contributes strictly positive amount (for

some realization of her type) among the first (N−1) movers will always be better off

deviating and contributing zero with probability one. Therefore, on an equilibrium

path where total contribution in first (N−1) stages is strictly positive (with strictly

positive probability), it must exceed the standalone level of the N -th contributor

for the very low realizations of her type.
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Lemma 5. In any perfect Bayesian equilibrium of Γ(p) where the total contribu-

tion generated in the first (N − 1) stages is strictly positive with strictly positive

probability, the expected total contribution is strictly higher than θpN
, the expected

standalone contribution of agent pN .

Proof. In view of Lemma 4, it is sufficient to show that for an event (i.e., a set of

type profiles for N agents) of strictly positive probability measure, the generated

total contributions must strictly exceed the standalone contributions of agent pN

(corresponding to her realized types in those type profiles).

For each realization of types of the first (N − 1) contributors ω ∈
∏N−1

i=1 Ai,

let z(ω) be the total contribution generated in the first (N − 1) stages. Observe

that the unique optimal action of agent pN of type τ in stage N is to contribute

max{0, xpN
(τ) − z}, if the total contribution in the first (N − 1) stages is z. We

claim that since z(ω) > 0 with strictly positive probability, it must be the case that

z(ω) > xpN
(τ pN

) with strictly positive probability. (5)

Suppose, to the contrary, that z(ω) ≤ xpN
(τ pN

) almost surely. Then, given the

optimal strategy of agent pN , the total contribution generated at the end of the

game is exactly identical to that generated if every agent contributes zero with

probability one in the first (N−1) stages. In particular, let k = max{1 ≤ n ≤ N−1 :

agent pn makes strictly positive contribution with strictly positive probability}.

By definition, for all n lying strictly between k and N , no contribution occurs (al-

most surely) on the equilibrium path in stage n. Consider a unilateral deviation

where agent pk contributes zero almost surely and independent of history. The dis-

tribution of total contribution generated at the end of the game remains unchanged

(as the last mover makes up the difference). Therefore, this deviation is strictly

beneficial for agent pN−k. This establishes (5). From (5), it follows that there exists

ε > 0 small enough such that

Pr{ω ∈
N−1∏
i=1

Ai : z(ω) > xpN
(τ pN

) + ε} > 0. (6)

Let τ̂ > τ pN
be defined by :

τ̂V ′pN
(xpN

(τ pN
) + ε) = 1.
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Choose τ̃ ∈ (τ pN
, τ̂). Since τ pN

= min{τ : τ ∈ ApN
} and ApN

is the support of the

probability distribution of τpN
, it follows that FpN

(τ̃) > 0. Also note that

xpN
(τ) < xpN

(τ pN
) + ε,∀τ ∈ ApN

∩ [τ pN
, τ̃ ]. (7)

as xi(τi) is strictly increasing in τi for all i. Let

B1 = {ω ∈
N−1∏
i=1

Ai : z(ω) > xpN
(τ), τ ∈ ApN

∩ [τ pN
, τ̃ ]}.

Then, using (6),

Pr(B1) > 0.

Let B be the event:

B = {(τp1 , ..., τpN−1
) ∈ B1, τpN

≤ τ̃}.

Since Pr(B1) > 0 and FpN
(τ̃) > 0, it follows that Pr(B) > 0. Further, using (6)

and (7), for realizations of type profiles (of all players) in the set B, the generated

total contributions strictly exceed the standalone contributions of agent pN . The

proof is complete. Q.E.D.

Finally, note that the set of perfect Bayesian equilibrium outcomes of the se-

quential game Γ(p) is identical to the set of perfect Bayesian equilibrium outcomes

generated when the extensive form is modified so that in stage i, i = 2, ..., N , agent

pi observes perfectly the sum of the actual contributions made by agents p1, ..., pi−1,

but not their individual contributions. Note that the payoff of each agent depends

only on the total contribution generated at the end of the game (and not on individ-

ual contribution levels) and further, each agent contributes only once so that any

information about the private preferences of an agent inferred from her individual

contribution level is of no relevance to agents who move later. The strategy sets

of players in the modified sequential game is a subset of that in Γ(p). However,

sequential rationality ensures that in any perfect Bayesian equilibrium of Γ(p), at

each stage of the game and for each realized history, the strategy of the player of

any type who moves at that stage must specify an action that is also optimal if the

player observes only the total contribution generated (at the end of the previous

stage for that realized history). Therefore, for any perfect Bayesian equilibrium of

Γ(p), working backwards from the last stage and substituting strategies of players

that possibly depend on individual past contributions by ones that depend only on
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the sum of previous contributions, one can construct a perfect Bayesian equilib-

rium of the modified sequential game that is outcome equivalent. Our results in the

subsequent sections comparing the expected total contributions generated in the

sequential and simultaneous move games are therefore equally valid for versions of

the sequential move game where individual contributions are observed imperfectly

but the cumulative contribution generated before each stage is observed perfectly.

5 Comparison of contributions

We now present the paper’s main results comparing the expected total contributions

generated in the simultaneous and sequential move contribution games.

First, we provide sufficient conditions under which sequential move games that

satisfy a certain restriction on the order of moves (specifically, in terms of who moves

in the last stage) generate weakly greater expected total contributions compared

to the simultaneous move game.

Proposition 1. Consider any Bayesian-Nash equilibrium E of the simultaneous

move contribution game where some agent i makes a strictly positive contribution

τi-almost surely. Then, every perfect Bayesian equilibrium of the N-stage sequential

move game Γ(p) where p = (p1, ..., pN) and pN = i, generates at least as much ex-

pected total contribution as in the Bayesian-Nash equilibrium E of the simultaneous

move game.

Proof. Follows immediately from Lemma 3 and Lemma 4. Q.E.D.

Next, we state sufficient conditions under which a sequential move game gen-

erates strictly higher expected total contributions compared to the simultaneous

move game.

Proposition 2. Consider any Bayesian-Nash equilibrium E of the simultaneous

move contribution game where some agent i makes a strictly positive contribution

τi-almost surely. Consider any perfect Bayesian equilibrium Ê of the sequential

move contribution game Γ(p) where p = (p1, ..., pN) and pN = i. Suppose, further,

that at least one of the following hold:

(a) (Imperfect Free-Riding) In equilibrium Ê of the sequential game Γ(p), ∃` 6= i

(i.e., some agent who moves in one of the first (N − 1) stages) who contributes

strictly positive amount with strictly positive probability;
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(b) V ′i (G) is strictly concave on [0, G] and there exists some agent j 6= i such that

in the equilibrium E of the simultaneous move contribution game Pr{τj : yj(τj) >

0} > 0.

Then, equilibrium Ê of the sequential move contribution game Γ(p) generates

strictly higher expected total contribution than equilibrium E of the simultaneous

move game.

Proof. If (a) holds, then the result follows from Lemma 3(i) and Lemma 5 . If (b)

holds, then the result follows from Lemma 3(ii) and Lemma 4. Q.E.D.

The conditions in Proposition 1 and Proposition 2 are strong sufficient condi-

tions; in particular, the conclusions of Proposition 1 and Proposition 2 may hold

even if the last mover in the sequential move game is one who contributes zero with

positive probability in the simultaneous move game and in fact, even if all players

contribute zero with positive probability in the simultaneous move game. We will

illustrate these possibilities in examples in section 7.

The next result follows immediately from Proposition 1 and Corollary 1:

Corollary 2. Consider any Bayesian-Nash equilibrium E of the simultaneous move

contribution game where every agent makes strictly positive contribution almost

surely. Then, for every p ∈ P , every perfect Bayesian equilibrium of the N-stage

sequential move game Γ(p) generates at least as much expected total contribution

as in equilibrium E of the simultaneous move game.

Corollary 2 clarifies that if the equilibrium of the simultaneous move game (to

which one compares the outcomes of the sequential games) is an “interior equilib-

rium” where all agents of “almost” all types contribute strictly positive amounts,

then there is no need to impose any restriction on the order of moves in the sequen-

tial game to ensure that it generates weakly higher expected total contributions.

Similarly, using Proposition 2 and Corollary 1, we have immediately:

Corollary 3. Consider any Bayesian-Nash equilibrium E of the simultaneous move

contribution game where every agent makes strictly positive contribution almost

surely. Suppose, further, that at least one of the following holds:

(a) ∀p ∈ P , in every perfect Bayesian equilibrium of the N-stage sequential

move game Γ(p), some agent that moves in the first (N − 1) stages contributes

strictly positive amount with strictly positive probability;
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(b) V ′i (G) is strictly concave on [0, G], ∀i ∈ {1, ..., N}.

Then, for every p ∈ P , every perfect Bayesian equilibrium of the N-stage sequential

move game Γ(p) generates strictly higher expected total contribution than equilib-

rium E of the simultaneous move game.

Corollary 3 indicates that if the equilibrium of the simultaneous move game is

an “interior equilibrium” then, under certain additional conditions, the sequential

move game generates strictly higher expected total contributions independent of

the order of moves.

6 Further conditions

In the previous section, we outlined some conditions under which the expected to-

tal voluntary contribution generated in a sequential move game exceeds (weakly

or strictly) that generated in a simultaneous move game. One restriction that is

required in all of the results outlined in the previous section is that in the Bayesian-

Nash equilibrium of the simultaneous move game, a certain agent (in particular,

the one that moves last in the sequential game) must contribute strictly positive

amount for almost every possible realization of her type. Another condition that

ensures that the sequential game generates strictly higher expected total contri-

bution requires that in the perfect Bayesian equilibrium of the N -stage sequential

game, free-riding is imperfect i.e., some agent moving in the first (N − 1) stages

contributes strictly positive amount with strictly positive probability.

In this section, we outline some sufficient and verifiable conditions on the ex-

ogenous preferences and distributions of types that ensure that the equilibria of the

relevant games satisfy the two properties noted above. It is worth emphasizing that

the conditions to be stated are by no means tight. One should view them as merely

illustrative of how the antecedents of the main propositions (and corollaries) in the

previous section may hold and as indicating that, in particular, the propositions

are not vacuous.

While the conditions can be easily written for the general version of the model

outlined in Section 2, for ease of exposition we will assume that:

Assumption 4. Vi(G) = V (G), ∀i ∈ {1, ..., N}.
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Note that Assumption 4 allows for the possibility that agents differ in the dis-

tribution of types (i.e., the distribution function Fi need not be identical) so that

some degree of asymmetry between players is allowed for. However, preferences

now only depend on the type of the agent and not on her identity.

First, we provide an easily verifiable condition under which there exists an agent

who contributes strictly positive amount with probability one in the simultaneous

move game. The condition, however, requires that the distribution of types assigns

strictly positive mass to the lowest type of each player.

Lemma 6. Let µ−k =
∏
j 6=k

Pr{τj = τ j}, and i ∈ argmaxk∈{1,...,n} τ kµ−k. Suppose

that

min
j=1,...,N

Pr{τj = τ j} > 0,

and V ′(0) >
1

τ iµ−i
. (8)

Then, in any equilibrium of the simultaneous move game, at least one player con-

tributes strictly positive amount with probability one.

Proof. Suppose there is an equilibrium of the simultaneous move game where every

player contributes zero with strictly positive probability. Consider player i of type

τ i who contributes zero. Then, the probability that the total contribution of all

other players is zero with probability µ−i and is bounded above by (N − 1)x(τ)

with probability 1− µ−i, where τ̄ = maxj=1,...,N τ̄j . The marginal expected payoff

to player i of type τ i (at zero contribution) is

≥ τ i[µ−iV
′(0) + (1− µ−i)V ′((N − 1)x(τ))]− 1.

So, if

τ [µ−iV
′(0) + (1− µ−i)V ′((N − 1)x(τ))] > 1, (9)

which is implied by (8), then we immediately obtain a contradiction. Q.E.D.

It should be clear that condition (8) is significantly more stringent than what

is required and that interior contribution by some player does not really require

strictly positive mass point at the lowest type (though an easily verifiable sufficient

condition may be more difficult to specify for a continuous distribution function).

For specific preferences, one can provide much weaker conditions under which all
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players can make strictly positive contribution with probability one in a simulta-

neous move game. The following example considers a symmetric two-players game

with quadratic utility for the public good.

Example 1. Let N = 2 and

V (G) =

{
[1− (1−G)2], 0 ≤ G ≤ 1

1, G > 1.

Let F1 = F2 = F where the support of F is the interval [τ , τ ]. We do not require

any probability mass point at τ . We assume:

1

2
< τ < τ < 1

and,

τ >
2

2 +m
, where m = E(

1

τ
).

Check that x(τ) = 1− 1/(2τ) ∈ (0, 1), τ ∈ [τ , τ ]. It is easy to check that assump-

tions 1-4 are satisfied.9 Consider the simultaneous move contribution game. The

following is a symmetric Bayesian-Nash equilibrium: each player of type τ ∈ [τ , τ ]

contributes:

y(τ) =
1

2
(1− 1

τ
+
m

2
).

Observe that since τ > 2
2+m

,

y(τ) > 0,∀τ ∈ [τ , τ ].

To see that this is an equilibrium, suppose agent 2 contributes according to strategy

y(τ). Then, consider agent 1’s first-order condition for an interior solution to her

maximization problem when she is of type τ :

2τEτ2 [(1− y1 − y(τ2))] = 1

i.e.,

1

2τ
= (1− y1)− Eτ2 [y(τ2))]

= (1− y1)− 1

2
(1− m

2
),

9Also note that V ′(.) is linear (hence, concave) and strictly decreasing (V (.) is strictly concave)
on [0, 1]. Here, set G = 2− 1

τ .
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which yields

y1 =
1

2
(1− 1

τ
+
m

2
) = y(τ).

Thus, both players playing according to the strategy y(τ) is a Bayesian-Nash

equilibrium. �

Next, we outline a condition under which the total contribution generated in

the first (N −1) stages of the sequential move game is strictly positive with strictly

positive probability so that the antecedent of Lemma 5 holds and that one of the

conditions in Proposition 2(b) and Corollary 3 hold.

To begin, let

τ = min{τ i : i = 1, ..., N}

τ̄ = max{τ i : i = 1, ..., N}.

Define the function x(τ) on the entire interval [τ , τ̄ ] by:

x(τ) = argmaxx τV (x)− x, τ ∈ [τ , τ̄ ].

Under assumption 1,

1 < τ iV
′
i (0) = τ iV

′(0), i = 1, ..., N,

so that x(τ) ∈ (0, G],∀τ ∈ [τ , τ̄ ], and

τV ′(x(τ)) = 1.

Note that x(τ) is the optimal “standalone” contribution of any player of type τ i.e.,

xi(τi) = x(τi),∀τi ∈ Ai,∀i = 1, ..., N,where xi(τi) is as defined in Section 2. Also,

note that x(τ) is continuous and strictly increasing on [τ , τ̄ ].

Lemma 7. Consider any sequential contribution game Γ(p) where p = (p1, ..., pN)

and pN = i. Let j ∈ {p1, ..., pN−1} be an agent such that

τ j ≥ τ p`
, ` = 1, ..., N − 1. (10)

If
1

τ̃

∫ τ̃

τ i

(1− x(τ)

x(τ̃)
) dFi(τ) >

1

τ j
(11)

for some τ̃ ∈ (τ i, τ i), then in any perfect Bayesian equilibrium of Γ(p), some agent

who moves in the first (N − 1) stages contributes strictly positive amount with

strictly positive probability i.e., free-riding is necessarily imperfect.

18



Proof. Suppose, to the contrary, that there exists a perfect Bayesian equilibrium of

Γ where the total contribution generated in the first (N − 1) stages is zero almost

surely. It is easy to check that in that case, the contribution generated at the end of

the game is exactly the standalone contribution x(τ) of the last mover i, depending

on her realized type τ ∈ Ai.
Consider agent j (as defined in (10)) who moves in one of the first N − 1

stages. We will show that it is strictly gainful for agent j of type τ j to deviate and

contribute a strictly positive amount. The smoothness of the payoff function in τ

then implies that there exists ε > 0 such that deviation is strictly gainful for all

types τj of player j lying in [τ j − ε, τ j]. As τ j = sup{τ : τ ∈ Aj} where Aj is the

support of the distribution function Fj, it follows that

Pr{τj ∈ [τ j − ε, τ j]} > 0

which would be a contradiction.

In the rest of this proof we will show that it is strictly gainful for agent j of type

τ j to deviate and contribute an amount equal to x(τ̃) > 0 where τ̃ is as defined in

the proposition.

Following such a deviation by agent j of type τ j, the total contribution at the

end of the game is at least as large as x(τ̃) if the last player’s (player i’s) type τi

≤ τ̃ , while if τi > τ̃ then the total contribution is at least as large as x(τi). Thus,

the expected utility of the deviating agent j of type τ j is:

≥ τ j[

∫ τ̃

τ i

V (x(τ̃)) dFi(τi) +

∫ τ̄i

τ̃

V (x(τi)) dFi(τi)]− x(τ̃),

and so this deviation is gainful as long as:

τ j

∫ τ i

τ i

V (x(τi)) dFi(τi) < τ j[

∫ τ̃

τ i

V (x(τ̃)) dFi(τi) +

∫ τ̄i

τ̃

V (x(τi)) dFi(τi)]− x(τ̃),

which is equivalent to:

τ j[

∫ τ̃

τ i

{V (x(τ̃))− V (x(τi))} dFi(τi)] > x(τ̃). (12)

We want to derive a sufficient condition such that (12) holds for some τ̃ ∈ (τ i, τ i).

As V is concave,

V (x(τ̃))− V (x(τi)) ≥ V ′(x(τ̃))(x(τ̃)− x(τi))

=
1

τ̃
τ̃V ′(x(τ̃))(x(τ̃)− x(τi))

=
1

τ̃
(x(τ̃)− x(τi)).
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Therefore, (12) holds as long as

τ j
τ̃

[

∫ τ̃

τ i

(x(τ̃)− x(τi)) dFi(τi)] > x(τ̃)

i.e.,
1

τ̃

∫ τ̃

τ i

(1− x(τi)

x(τ̃)
) dFi(τi) >

1

τ j

for some τ̃ ∈ (τ i, τ i), which follows from (11) Q.E.D.

Since
∫ τ̃
τ i

(1 − x(τi)
x(τ̃)

) dFi(τi) > 0, condition (11) is likely to be satisfied for some

τ̃ ∈ (τ i, τ i) if τ j is large enough. Further, larger the probability mass of the

distribution of types in a neighborhood of τ i, the easier it is for this condition

to hold.

The economic intuition is that greater the likelihood that the last mover has

very low valuation for the public good, greater the risk faced by an early mover

with high valuation for the public good when she tries to fully free ride on the last

mover because that may, in certain states of nature, lead to very low provision of

the public good. This creates incentive for an early mover with high valuation to

make a strictly positive contribution. It is easy to see that (11) is more likely to

hold if an early mover has significantly “higher” distribution of valuations (types)

than the last mover. Indeed, even under complete information, an early mover may

not free ride on the last mover and may contribute a strictly positive amount if her

valuation of the public good is significantly higher than the last mover.

If agents are identical, then under complete information, early movers always

free ride fully on the last mover. With incomplete information however, even if

all agents have identical distribution of types, early movers may not fully free ride

on the last mover – this, in fact, is a crucial difference between the complete and

incomplete information sequential games. We illustrate this in the next example

where all agents have identical distribution of types and for a specific class of

distribution functions, we show that (11) can be satisfied (so that some early mover

contributes a strictly positive amount with strictly positive probability).

Example 2. Suppose that Fi = F, ∀i ∈ {1, ..., N}, where the support of F is

the interval [τ , τ ] and F has the following structure:

F (τ) =

{
(1− ε)G(τ), τ ≤ τ ≤ τ̃

(1− ε) + εH(τ), τ̃ ≤ τ ≤ τ ,
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where 0 < ε < 1, τ̃ ∈ (τ , τ), G(τ) is any probability distribution function with

support [τ , τ̃ ] satisfying

0 ≤ G(τ) < G(τ̃) = 1,

andH(τ) is a probability distribution function with support [τ̃ , τ ], satisfyingH(τ̃) =

0.

Then, (11) reduces to the requirement that:

1 <
τ

τ̃
[

∫ τ̃

τ

(1− x(τ)

x(τ̃)
) dF (τ)]

= τ

{
1− ε
τ̃

[

∫ τ̃

τ

(1− x(τ)

x(τ̃)
) dG(τ)]

}

= τ

{
1− ε
τ̃

[
1− 1

x(τ̃)

∫ τ̃

τ

x(τ) dG(τ)

]}
. (13)

As
∫ τ̃
τ
x(τ) dG(τ) < x(τ̃),

[1− 1

x(τ̃)

∫ τ̃

τ

x(τ) dG(τ)] > 0.

Since H, τ are independent of the distribution function G whose support is [τ , τ̃ ],{
1− ε
τ̃

[
1− 1

x(τ̃)

∫ τ̃

τ

x(τ) dG(τ)

]}
is independent of H and τ in particular, so (13) holds if τ is large enough. �

Finally, we note that condition (13) that ensures strictly positive contribution

by some early mover in the sequential game is consistent with the last mover of the

sequential game making strictly positive contribution with probability one in the

simultaneous move game (as required in some of the results of the previous section).

To illustrate this, consider Example 2 above. The sufficient condition (8) in Lemma

6 that ensures that some player contributes strictly positive amount almost surely

is satisfied as long as:

η = lim
τ↓τ

G(τ) > 0

and

V ′(0) >
1

τ((1− ε)η)N−1

and these are perfectly consistent with τ being large enough so that (13) holds.
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7 A special case: two agents, two types

In this section, we discuss a special case of our model with two agents (N = 2) and

two potential types. We use this to make two important points.

First, though our general results in Section 5 require that at least some agent

contributes strictly positive amount with probability one in the simultaneous move

game (in order to obtain weakly or strictly higher expected total contribution in

the sequential move game), this is by no means necessary. We show that even if all

agents contribute zero with strictly positive probability in the simultaneous move

game, the sequential move game may still generate strictly higher expected total

contribution.

Second, our general results in Section 5 show that when the last mover is the one

who contributes strictly positive amount almost surely in the simultaneous move

game, the sequential game generates weakly higher expected total contribution (and

under additional conditions, strictly higher contributions). We show that even if

the agent who contributes strictly positive amount with probability one in the

simultaneous move game moves early in the sequential game and the last mover is

an agent who contributes zero with strictly positive probability in the simultaneous

move game, the sequential game may still generate strictly higher expected total

contribution.

In this section, we assume that Assumptions 1 – 4 hold so that

Vi(G) = V (G), i = 1, 2,

and further restrict:

Ai = {τL, τH}, with 0 < πi = Pr[τi = τH ] < 1, i = 1, 2.

Proposition 1 shows that there is a sequential game that generates weakly higher

expected total contribution than the simultaneous move game as long as there is at

least one agent who contributes strictly positive amount in the simultaneous move

game for (almost) every realization of her type. If, in addition, the requirements

of Proposition 2 are satisfied, then the sequential game generates strictly higher

expected total contributions. If the simultaneous move game is such that every

agent contributes zero with positive probability, then the results outlined in the

previous section no longer apply. However, for the special case considered in this

section, we can show that under certain conditions, the sequential contribution
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game generates higher expected total contributions even though the equilibrium in

the simultaneous move game is one where both agents contribute zero when their

realized type is τL. Thus, the interiority of equilibrium contributions (for some

agent) is not necessary for higher contributions under the sequential form of the

contribution game.

Recall that x(τ) is the “standalone” contribution of type τ as defined earlier.

Proposition 3. Suppose that

x(τH)

x(τL)
< min{ 1

πi
, 2πk +

1− πk
πi
}, (14)

where

πk = max{π1, π2}, and i 6= k.

Then, the expected total contribution generated in any perfect Bayesian equilibrium

of the sequential game Γ(p), where p = (p1, p2) and p2 = k, is strictly greater than

that generated in any Bayesian-Nash equilibrium of the simultaneous contribution

game where both agents contribute zero when their realized type is τL.

The proof appears in the Appendix.

For π1 = π2 = 1
2
, (14) reduces to the requirement that x(τH) < 2x(τL), which is

quite easily satisfied as long as τL and τH are not too far apart.

Next, we point out that even if the sequential move game is such that the agent

(or agents) who contribute strictly positive amount for all realization of types in

the simultaneous move game move earlier than other agents, the sequential move

game may still generate higher expected total contribution than the simultaneous

move game. We illustrate this in the example (summarized) below where within

the framework of two agents and two types considered in this section, we choose a

specific quadratic functional form for the V (.) function.

Example 3. Let

V (G) =

{
[1− (1−G)2], 0 ≤ G ≤ 1

1, G > 1.

Here, x(τ) = 1− 1/(2τ), τ = τH , τL. Note that V ′(.) is linear (hence, concave) and

strictly decreasing (V (.) is strictly concave) on [0, 1]. Here, G = 2− 1
τH

. Assumptions

1-4 are satisfied as long as τL >
1
2
, τH < 1.
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Suppose πj > πi. Consider the sequential move game Γ(p) where p = (j, i) i.e.,

player j moves first and player i moves next. It can be checked that if

πi ≤ max

{
0, 1− τL

τH

[
2τL +

√
4τ 2
L − 1

]}
, (15)

then the first-mover (player j) of τH-type will make a strictly positive contribution

in the (unique perfect Bayesian equilibrium) sequential move game and the expected

total contribution generated is:

z̃ = (πi + πj)x(τH) + (1− πi)(1− πj)x(τL)− πiπj.

In the simultaneous move game, it can be shown that there is a unique Bayesian-

Nash equilibrium and in this equilibrium, agent j makes a strictly positive contribu-

tion for both realization of types, while agent i makes a strictly positive contribution

only if it is of τH-type. The expected total contribution in the simultaneous move

game ỹ is exactly equal to the expected standalone contribution of agent j i.e.,

ỹ = πjx(τH) + (1− πj)x(τL). Observe that z̃ − ỹ = [
1−πj

τL
− 1

τH
][πi

2
] > 0 if

πj < 1− τL
τH
. (16)

Thus, even though the agent who has strictly higher probability of being τH-

type and contributes strictly positive amount almost surely in the simultaneous

move game moves first in the sequential move game and the agent who does not

contribute strictly positive amount almost surely in the simultaneous move game is

the last mover in the sequential move game, the sequential game generates (strictly)

higher expected total contribution relative to the simultaneous move game if (15)

and (16) hold. �

Appendix

Proof of Lemma 2. First, observe that in any equilibrium of the simultaneous move

game, the first order condition for any player j of type τ is given by:

E[τjV
′
j (yj(τj) +

∑
k 6=j

yk)] = 1, if yj(τj) > 0

≤ 1, if yj(τj) = 0

(where the expectation is taken with respect to the distribution of
∑

k 6=j yk). Using

the strict concavity of Vj(.) in the relevant range, it is easy to check that each
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player j’s equilibrium contribution is weakly increasing in his type τj and, further,

strictly increasing over the range of types τj where yj(τj) > 0 . Therefore, for

any fixed player i, the lower bound (infimum) of the support of the distribution

of y−i =
∑

j 6=i yj, the total equilibrium contributions of all players other than i

(whether or not they contribute a strictly positive amount), is given by their total

contribution in the state where τj = τ , ∀j 6= i, and the upper bound (supremum) of

the support of the distribution of y−i is given by their total contribution in the state

where τj = τ̄ ,∀j 6= i. These two bounds cannot be identical unless all players other

than player i contribute zero with probability one, and the latter is not possible

given that Pr{τj : yj(τj) > 0} for some j 6= i. Q.E.D.

Proof of Proposition 3. Let y1(τ), y2(τ), τ = τH , τL, denote the equilibrium contri-

butions of the two agents in the simultaneous move game where

y1(τL) = y2(τL) = 0.

The first-order condition of maximization for agent i of type τL yields for i, j =

1, 2, j 6= i,

πjτLV
′(yj(τH)) + (1− πj)τLV ′(0) ≤ 1. (17)

Using Assumption 2,

πjτLV
′(x(τL)) + (1− πj)τLV ′(0) > 1, (18)

which implies that (comparing (17) and (18))

yj(τH) > x(τL) > 0, j = 1, 2.

From the first-order condition for agent i of type τH we have for i, j = 1, 2, j 6= i,

πjτHV
′(yi(τH) + yj(τH)) + (1− πj)τHV ′(yi(τH)) = 1 (19)

so that

τHV
′(yi(τH)) > 1, i = 1, 2 (20)

and therefore yi(τH) < x(τH), i = 1, 2. Thus,

x(τL) < yj(τH) < x(τH), j = 1, 2. (21)

The expected total contribution generated in this game is

[π1y1(τH) + π2y2(τH)].
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Further, from the first-order conditions:

π1V
′(y1(τH) + y2(τH)) + (1− π1)V ′(y2(τH)) =

1

τH
= V ′(x(τH)) (22)

π2V
′(y1(τH) + y2(τH)) + (1− π2)V ′(y1(τH)) =

1

τH
= V ′(x(τH)) (23)

and using the concavity of V ′(.) on [0, G] and Jensen’s inequality we have:

π1 y1(τH) + y2(τH) ≤ x(τH) (24)

π2 y2(τH) + y1(τH) ≤ x(τH). (25)

Also, from (22) and (23), V ′(y1(τH) + y2(τH)) < V ′(x(τH)) so that

y1(τH) + y2(τH) > x(τH). (26)

From (21) and (26),

y1(τH) + y2(τH) > max{x(τH), 2x(τL)}. (27)

Multiply (24) by π2 and (25) by π1 and add to obtain

π1π2 y1(τH) + π2 y2(τH) + π1π2 y2(τH) + π1 y1(τH)

≤ (π1 + π2)x(τH),

implying

π1 y1(τH) + π2 y2(τH)

≤ (π1 + π2)x(τH)− π1π2[y1(τH) + y2(τH)]

= [πkx(τH) + (1− πk)x(τL)] + [πi{x(τH)− πk[yi(τH) + yk(τH)]}]− (1− πk)x(τL), i 6= k

<︸︷︷︸
using (27)

πkx(τH) + (1− πk)x(τL) + [πi{x(τH)− πk ·max{x(τH), 2x(τL)}}]− (1− πk)x(τL)

< πkx(τH) + (1− πk)x(τL). (using (14))

Therefore, the expected total contribution in this equilibrium of the simultaneous

move game π1 y1(τH)+π2 y2(τH) < πkx(τH)+(1−πk)x(τL), the expected standalone

contribution of agent k. Finally, from Lemma 4, we know that in the sequential

move game Γ(p) where p = (p1, p2), p2 = k i.e., agent k is the last mover, the

expected total contribution generated is at least as large as the expected standalone

contribution [πkx(τH) + (1−πk)x(τL)] of agent k. The proposition follows. Q.E.D.
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