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Abstract
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voluntary contributions is higher when agents contribute sequentially (ob-

serving prior contributions) rather than simultaneously. We establish this

in a conventional framework with quasi-linear utility where agents care only
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1 Introduction

In many situations economic agents contribute sequentially towards a public good

or a project of common interest. Often, the order in which they contribute is de-

termined exogenously. National governments may commit resources and defence

forces to common war effort in some hierarchical order depending on individual

stakes in the conflict. R&D investment by private firms with shared research out-

put (as in open source software development or research on mapping of genomes)

often follows the scientific order of discoveries with firms specializing in more “ba-

sic" research moving earlier (e.g., Bessen and Maskin, 2006).1 In team production,

various members can be deliberately induced to exert their efforts in an exogenous

sequential order under full observability of efforts (Winter, 2006). Firm-level in-

vestment in providing local public goods for the industry (such as political lobbying

for industry-wide benefits) may often be sequenced with incumbents moving ear-

lier than entrants. Contributions to reduction of global environmental damage by

various countries may follow a specific order according to perceived leader-follower

roles. Finally, contributions to charities by donors during fundraising drives may

follow the sequential order in which the donors are contacted.

In many of the examples discussed above, contributions by agents are observed

by or revealed to others. Governments announce their own commitments to war

efforts or disaster relief. In independent R&D ventures with shared output, leading

firms may highlight their investment in the media; the follower firms make invest-

ment decisions based on this knowledge. During fundraising campaigns, charities

announce donations as they come in. When contributions made by other agents are

not observed till the contribution process has ended, the strategic interaction be-

tween potential contributors is identical to that in a simultaneous move game. On

the other hand, the ability to observe actions taken by prior contributors generates

a sequential game of voluntary contributions. A natural question that arises in this

context is the effect of observability of contributions on the strategic incentives of

voluntary contributors and on the eventual provision of the public good.

Varian (1994) has argued that in sequential games of voluntary contribution

to a pure public good where the order of moves is exogenous, the ability of late

movers to observe the contributions made by early movers aggravates the free rider

1Bessen and Maskin analyze the merits of sequential discoveries with public good features in

software developments (due to complementarity between successive innovations).
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problem. This is particularly striking if each agent has only one chance to con-

tribute and not able to add to her current contribution later (i.e., early movers can

credibly pre-commit to a certain level of contributions); in such situations, the total

contribution generated is never greater and can be significantly smaller relative to

the game where contributions are not revealed or observed (i.e., a simultaneous

contribution game).2 An important assumption behind Varian’s result is complete

information — agents knew each others’ valuations of the public good. Intuition

suggests that if agents do not know each others’ valuations (the contribution game

is one of incomplete information), then early movers who commit to low contri-

butions to free ride on late movers also face the risk that late movers may not

value the public good as much and thus, under-provide it relative to what the early

movers may consider acceptable. Furthermore, when agents cannot observe others’

contributions (as in a simultaneous move game), a contributor with lower valuation

has an incentive to contribute much less than her valuation as she gambles on the

event that other contributors will be ones with much higher valuations and will

contribute generously; this, in turn, means that in states of the world where a large

proportion of contributors are actually ones with low valuation, the total contri-

bution is excessively small relative to what these low valuation contributors would

have provided under complete information. When contributions are sequentially

observed this problem is partially redressed, because later contributors make their

donations knowing what the earlier ones have contributed and do not need to guess

their contributions.

This paper develops the above intuition to show that under incomplete infor-

mation about individual (independent) private valuations for the public good, a

sequential contribution game may actually generate higher total expected contri-

bution than the simultaneous move contribution game.3 We establish this in a

conventional economic framework (as in Varian, 1994) where contributors care only

about the total provision of the public good (rather than individual contribution

levels of other agents), thus ruling out snob effects, warm glow and more generally,

complementarities between individual contributions. This distinguishes our work

2Bruce (1990) shows a similar result in the specific context of defence spending.
3In a brief section, Varian (1994) discusses the incomplete information game considered by us

and argues that incomplete information about the second-mover’s utility leads the first-mover to

contribute less than what she would under complete information. He does not compare sequential

and simultaneous contributions under incomplete information.
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from Romano and Yildirim (2001) who show that sequential contribution may in-

crease total contributions if utility depends not just on total contributions but also

on individual contribution levels. Further, there is no non-convexity in the pro-

duction technology. This rules out the presence of increasing returns or threshold

effect in the production technology; Andreoni (1998) shows that in the presence

of such effects, learning about increased contribution of early movers may increase

the marginal productivity of followers’ contributions, thus creating advantages for

a sequential contribution format.4

We allow for arbitrary number of agents and fairly general distribution of types.

We show that, under certain conditions that include concavity of the marginal

utility from the public good, if there is an agent who contributes a strictly positive

amount almost surely in an equilibrium of the Bayesian simultaneous move game,

then every equilibrium of the sequential contribution game where that agent is

placed at the very end of the sequential order of moves would generate higher

expected total contribution; in other words, a sequential contribution format is

always “better" in terms of generating contributions as long as the last mover is one

who does not fully free ride in the simultaneous contribution game, no matter what

her realized type. This is a strong result because the superiority of the sequential

game is obtained with very little restriction on the order of moves except to specify

who should move last. Further, we obtain this result, even though each agent

has only one chance to contribute and can therefore pre-commit to contributions;5

under complete information, early movers have the greatest ability to free ride on

late movers precisely when agents have such commitment ability. Our result also

4One may view discrete public goods (such as a 0-1 public good that is either provided or not

provided) as special cases of such threshold effect in technology. Admati and Perry (1991) and

Marx and Matthews (2000) analyze the provision of discrete public goods under complete infor-

mation and compare the outcomes generated under an alternating offer voluntary contributions

format and an unrestricted repeated contributions format. Menezes et al. (2001), and Agastya

et al. (2007) analyze simultaneous move contribution to discrete public goods under incomplete

information about private valuations.
5Winter (2006) examines incentive design in team production problem under complete infor-

mation with an exogenously given sequential order of tasks where the tasks performed by agents

are perfectly complementary. In our model, the participants’ contributions are perfect substitutes

(rather than complements) and there are no direct, differential incentives for participants except

that all participants get equal access to the total public good produced. Under incomplete infor-

mation, our intuition favoring sequential contributions may carry over to some team production

technologies with less than perfect complementarity.
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implies that if the simultaneous move game has an “interior" equilibrium where all

agents of almost every type make strictly positive contributions, every sequential

move game generates higher expected total contribution independent of the order

of moves.

In the special case of two agents and two types (‘high’ and ‘low’ marginal util-

ities), we identify a simple sufficient condition that will ensure that at least one

agent will always make strictly positive contributions in the simultaneous move

game. Further, if the agents are symmetric (i.e., have the same type distribution),

the same condition guarantees that both agents will always contribute strictly pos-

itive amounts. Finally, it is shown that strictly positive contributions for some

agent in the simultaneous move game, for each realization of the agent’s type, is

not necessary for the sequential game form to dominate the simultaneous move

form.

In an earlier paper (Bag and Roy, 2008) we consider a multistage game of contri-

bution to a public good with all agents having the option to contribute in all stages.

In that paper, it is shown that under incomplete information about the agents’

valuations of the public good, the expected total contribution can be higher if the

contributions made at each stage are observed before the next stage; the economic

reasoning behind this is based on the possibility of revelation of the private pref-

erences of contributors through their actions and the incentive of higher valuation

contributors to hide information about their true preferences as it may make them

more vulnerable to free riding by other agents in subsequent stages of the game.

Such incentives are not important in voluntary contribution processes where agents

cannot contribute repeatedly; the current paper focuses on these environments by

assuming that agents move sequentially with each agent having only one turn to

contribute so that later movers cannot free ride on earlier contributors and contrib-

utors have no incentive to either hide or reveal their private information about how

much they care about the public good.

There is a substantial literature on voluntary provision of public goods under

incomplete information that focus on inefficiencies that arise due to incomplete-

ness of information.6 There is also an extensive literature on mechanism design

and public goods that focus on uncertainty caused by private information about

6See, among others, Bliss and Nalebuff (1984), Palfrey and Rosenthal (1988), Gradstein (1992),

Vega-Redondo (1995).
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preferences.7 Our paper differs from both strands — we do not concern with the ef-

ficiency or normative issues, nor do we suggest sophisticated incentive mechanisms;

instead, we offer an incomplete information based explanation of why sequential

contribution schemes may be better for the total provision of the public good.

The next section presents the model. In section 3 we analyze the simultaneous

contribution game, followed by an analysis of the sequential contribution game in

section 4. In section 5, sequential and simultaneous move game forms are compared.

Section 6 discusses a special case with two-agents and two types.

2 The model

N > 1 agents contribute voluntarily to a public good. Each agent i ∈ {1, ..., N}
has a budget constraint wi > 0. Agent i’s payoff depends on the total contribution

of all agents, her own contribution and her own type and is given by

ui(gi, g−i, τ i) = τ iVi(gi + g−i) + wi − gi,

where gi ≥ 0 is i’s contribution, g−i is the total contribution of all other agents j 6= i,

and τ i is a private preference parameter of agent i that affects her marginal utility

from consumption of the public good, is known only to agent i and is interpreted

as the “type" of agent i. It is common knowledge that each agent i’s type τ i is an

independent random draw from a probability distribution with distribution function

Fi and compact support Ai ⊂ R++. Let τ i and τ i be the lowest and highest possible

types of agent i defined by

τ i = min{τ : τ ∈ Ai}, τ i = max{τ : τ ∈ Ai}.

Assumption 1. ∀i ∈ {1, ..., N}, Vi(.) is continuously differentiable, concave and

non-decreasing on R+, with Vi(0) = 0, τ iV
0
i (0) > 1 and τ iV

0
i (wi) < 1.

Define ∀i:
zi = sup{x ≥ 0 : τ iV 0

i (x) = 1}.
Under Assumption 1, 0 < zi < wi. It is easy to check that agent i would never

contribute in excess of zi in any contribution game, whatever be her type. This

7See, among others, Groves and Ledyard (1977), Cremer and Riordan (1985), Bagnoli and

Lipman (1989), Jackson and Moulin (1992).
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allows us to drop wi and write agent i’s payoff function simply as

ui = τ iVi(gi + g−i)− gi.

Define

G =
NX
i=1

zi > 0.

Assumption 2. Vi(.) is strictly concave on [0, G], ∀i ∈ {1, ..., N}.

Under Assumptions 1 and 2, every agent i of every possible type τ i ∈ Ai has a

unique standalone contribution xi(τ i) ∈ (0, wi) defined by:

xi(τ i) = argmax
gi

ui(gi, 0, τ i),

satisfying τ iV
0
i (xi(τ i)) = 1; (1)

it puts an upper bound on an agent’s contribution, given her type, in any contri-

bution game. It is easy to check that xi(τ i) is strictly increasing in τ i, implying:

zi = xi(τ i).

The expected standalone contribution of agent i, denoted hereafter by θi, is given

by:

θi =

Z
Ai

xi(τ i)dFi(τ i).

Also, since Vi(.) is non-decreasing, V 0
i (.) ≥ 0. Assumption 2 therefore implies

that V 0
i (G) > 0 on [0, G). Finally, we impose:

Assumption 3. V 0
i (.) is concave on [0, G].

Assumption 3 is an important technical restriction that will be useful in compar-

ing expected total contributions under sequential and simultaneous move games.8

8A simple example that satisfies all of the above assumptions is the situation where all agents

have identical utility functions and distribution of types and for all i = 1, ..., N, Vi(.) is the

quadratic function

Vi(G) =

(
αG− 1

2G
2, 0 ≤ G ≤ α, α > 0

1
2α

2, G > α,

with the additional restrictions that τ i = τ , τ i = τ satisfy

1

ατ
< 1,

1

ατ
≥ 1− 1

N
.
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Note that we do not require that the function V 0
i (.) be concave or strictly decreasing

on the entire positive real line.

While our analysis is presented for a continuously variable public good, by

setting Vi(G) = V (G) for all i and interpreting V (G) as the ‘probability of success’

of a public project with binary outcomes (“success" or “failure") that depends

on total investment G, the analysis can be easily applied to a discrete public good

setting;9 in that case, τ i > 0 is agent i’s deterministic utility if the project succeeds,

while the utility obtained when the project fails is normalized to zero.

We will compare two game forms — an N-stage sequential contribution game and

a simultaneous contribution game — and the solution concepts are Perfect Bayesian

Equilibrium and Bayesian-Nash Equilibrium, respectively. In the sequential con-

tribution game, the agents contribute in an exogenous order and the contribution

amounts become known as and when they are made.10 Each agent is allowed to con-

tribute only once and is not allowed to add to her contribution at a later stage. In

the simultaneous contribution game, each agent contributes without any knowledge

of other agents’ contributions. We confine attention to pure strategy equilibria.

The contribution games are compared according to the (ex ante) expected total

contributions made by all N agents i.e., the expected provision of public good.

3 Simultaneous contribution game

First, we analyze the simultaneous contribution game. Let yi(τ i) denote the equi-

librium contribution of agent i of type τ i ∈ Ai, i ∈ {1, ..., N} and y−i(τ−i) =P
j 6=i yj(τ j) where τ−i ∈ Πj 6=iAj is the vector of types for agents other than agent i.

Then, yi(τ i) is a solution to the following expected utility maximization problem:

max
y≥0

τ iEτ−i [Vi(y + y−i(τ−i))]− y. (2)

In what follows, we denote by F−i(τ−i) the joint distribution of τ−i. We start with

a simple observation that follows directly from the definitions of xi(τ i) and G:

9Consider any density function h(z) with support on the positive real line that is weakly

decreasing and is, in addition, strictly decreasing and concave over [0, G]. Then, taking V (x) =R x
0
h(z)dz as the probability of success of the project satisfies our assumptions.
10Bagwell (1995) pointed out the importance of observability of agents’ actions and its implica-

tions for agents’ strategies in sequential action games.
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Lemma 1. Consider any Bayesian-Nash equilibrium of the simultaneous move con-
tribution game where yi(τ i) is the contribution made by agent i of type τ i. Then,

yi(τ i) ≤ xi(τ i) ∀τ i ∈ Ai, ∀i ∈ {1, ..., N}, and the total contributions generated
NX
i=1

yi(τ i) ≤ G with probability one.

Next, we obtain a much sharper bound for the expected total contribution:

Lemma 2. Consider any Bayesian-Nash equilibrium of the simultaneous move con-
tribution game where for some agent i, yi(τ i), the equilibrium contribution of agent

i, is strictly positive τ i-almost surely i.e., Pr{τ i : yi(τ i) > 0} = 1.
(i) Then, the expected total contribution by all agents generated in this equilib-

rium does not exceed θi, the expected standalone contribution of agent i.

(ii) If, in addition, V 0
i (G) is strictly concave on [0, G] and there exists some

agent j 6= i such that Pr{τ j : yj(τ j) > 0} > 0, then the expected total contribution
by all agents generated in this equilibrium is strictly lower than θi, the expected

standalone contribution of agent i.

Proof. For agent i of type τ i, the expected marginal utility from contributing yi(τ i)

given the equilibrium strategies of other agents is:

τ i

Z
V 0
i (yi(τ i) + y−i(τ−i))dF−i(τ−i)

= τ iEτ−i [V
0
i (yi(τ i) + y−i(τ−i))]

= 1, τ i-almost surely, (3)

using the first-order condition of the maximization problem (2) faced by agent i

of type τ i as yi(τ i) > 0 τ i-almost surely. First, we establish (i). Since (using

Assumption 3) V 0
i (.) is concave on [0, G] and from Lemma 1, yi(τ i)+y−i(τ−i) ∈ [0, G]

almost surely, we have by Jensen’s inequality

τ iV
0
i (yi(τ i) +Eτ−i{y−i(τ−i)}) ≥ 1, τ i-almost surely

so that using (Assumption 2) concavity of Vi(.) and (1) it follows that

yi(τ i) +Eτ−i{y−i(τ−i)} ≤ xi(τ i), τ i-almost surely

and integrating with respect to the distribution of agent i’s type we have:

Eτ i{yi(τ i)}+Eτ−i{y−i(τ−i)} ≤ Eτ i{xi(τ i)} = θi,

8



establishing part (i) of the lemma.

Now, consider part (ii) of the lemma. It is easy to check from the first-order

conditions of agent j’s maximization problem that given y−j(τ−j), the equilibrium

contribution yj(τ j) of agent j is non-decreasing in the type τ j of agent j. Thus,

if τ < τ 0, τ , τ 0 ∈ Aj and yj(τ) > 0, then yj(τ
0) > 0. Further (from the first-order

condition of maximization (3)),

1 = τ

Z
V 0
j (yj(τ) + y−j(τ−j))dF−j(τ−j)

< τ 0
Z

V 0
j (yj(τ) + y−j(τ−j))dF−j(τ−j)

so that yj(τ 0) > yj(τ). Since Pr{τ j : yj(τ j) > 0} > 0 for some j 6= i, the total

contribution of agents other than agent i, y−i(τ−i), is a non-degenerate random

variable. Therefore, using strict concavity of V 0
i (.) on [0, G] (assumed in part (ii)

of the lemma), the fact that yj(τ j) + y−j(τ−j) ∈ [0, G] almost surely (Lemma 1),
and Jensen’s inequality, we have

τ iV
0
i (yi(τ i) +Eτ−i{y−i(τ−i)}) > 1, τ i-almost surely

so that using strict concavity of Vi(.) on [0, G] (Assumption 2) and (1) it follows

that

yi(τ i) +Eτ−i{y−i(τ−i)} < xi(τ i), τ i-almost surely

and integrating with respect to the distribution of agent i’s type we have:

Eτ i{yi(τ i)}+Eτ−i{y−i(τ−i)} < Eτ i{xi(τ i)} = θi,

establishing part (ii) of the lemma. Q.E.D.

The next result follows immediately from Lemma 2:

Corollary 1. Suppose there is a Bayesian-Nash equilibrium of the simultaneous

move contribution game where for all i ∈ {1, ..., N}, yi(τ i), the equilibrium contri-

bution of agent i of type τ i, satisfies yi(τ i) > 0, τ i-almost surely. Then, the ex-

pected total contribution in this equilibrium does not exceedmin{θi : i = 1, ..., N}. If,
further, V 0

i (G) is strictly concave on [0, G] for all i ∈ {1, ..., N}, then the expected
total contribution in this equilibrium is strictly less than min{θi : i = 1, ..., N}.

9



4 Sequential contribution game

In this section, we analyze the sequential contribution games where agents con-

tribute in an exogenous order of moves with each agent contributing only once.

Let P = {set of all permutations of (1, ..., N)}. For each p = (p1, ..., pN) ∈ P , we

can define an N-stage sequential contribution game Γ(p) where agent pi contributes

(only) in the i-th stage after observing contributions made in every previous stage.

We start with a result on the total contribution in any sequential move game

guaranteed by the last mover’s type:

Lemma 3. In any perfect Bayesian equilibrium of Γ(p), for each possible realiza-

tion τ of the type of the last mover pN , the total contribution generated is at least as

large as xpN (τ), her standalone contribution for type τ , and the expected total con-

tribution generated in the game is at least as large as θpN , the expected standalone

contribution of agent pN .

Proof. The proof follows from the fact that if z ≥ 0 is the total contribution of
agents in the first (N − 1) stages, then in the last stage of the game, the unique
optimal action of agent pN of type τ is to contribute max{0, xpN (τ)− z}. Q.E.D.
Next, we argue that as long as the total contribution generated in the first

(N − 1) stages is strictly positive, the total expected contribution generated in the
sequential game is strictly higher than the expected standalone contribution of the

last mover. The main argument here is that earlier contributors know that even

if they contribute zero, the last mover will ensure that the total contribution is at

least as large as her standalone contribution (depending on her realized true type).

If the total contribution on the equilibrium path in the first (N−1) stages is below
the standalone level for the lowest type of the contributor in stage N , then the

last contributor who contributes strictly positive amount (for some realization of

her type) among the first (N − 1) movers will always be better off deviating and
contributing zero with probability one. Therefore, on an equilibrium path where

total contribution in first (N − 1) stages is strictly positive (with strictly positive
probability), it must exceed the standalone level of the N-th contributor for very

low realizations of her type.

Lemma 4. In any perfect Bayesian equilibrium of Γ(p) where the total contribu-

tion generated in the first (N − 1) stages is strictly positive with strictly positive
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probability, the expected total contribution is strictly higher than θpN , the expected

standalone contribution of agent pN .

Proof. In view of Lemma 3, it is sufficient to show that for an event (i.e., a set

of type profiles for N agents) of strictly positive probability measure, the gener-

ated total contributions strictly exceed the standalone contributions of agent pN
(corresponding to her realized types for those type profiles).

For each ω ∈ QN−1
i=1 Ai realization of types of the first (N − 1) contributors,

let z(ω) be the total contribution generated in the first (N − 1) stages. Observe
that the unique optimal action of agent pN of type τ in stage N is to contribute

max{0, xpN (τ) − z}, if the total contribution in the first (N − 1) stages is z. We
claim that since z(ω) > 0 with strictly positive probability, it must be the case that

z(ω) > xpN (τ pN ) with strictly positive probability. (4)

Suppose, to the contrary, that z(ω) ≤ xpN (τ pN ) almost surely. Then, given the

optimal strategy of agent pN , the total contribution generated at the end of the

game is exactly identical to that generated if every agent contributes zero with

probability one in the first (N−1) stages. In particular, let k = max{1 ≤ n ≤ N−1 :
agent pn makes strictly positive contribution with strictly positive probability}.
By definition, for all n lying strictly between k and N , no contribution occurs (al-

most surely) on the equilibrium path in stage n. Consider a unilateral deviation

where agent pk contributes zero almost surely and independent of history. The dis-

tribution of total contribution generated at the end of the game remains unchanged

(as the last mover makes up the difference). Therefore, this deviation is strictly

beneficial for agent pN−k. This establishes (4). From (4), it follows that there exists

� > 0 small enough such that

Pr{ω ∈
N−1Y
i=1

Ai : z(ω) > xpN (τ pN ) + �} > 0,

which also implies11 that there exists bτ > τ pN such that

Pr{ω ∈
N−1Y
i=1

Ai : z(ω) > xpN (bτ)} > 0. (5)

11Here, we use the continuity of xpN (τ) in τ ; this follows from the Maximum theorem and the

uniqueness of solution to the maximization problem in (1).
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Since τ pN = min{τ : τ ∈ ApN} andApN is the support of the probability distribution

of τ pN , it follows that FpN (bτ) > 0. Let
B1 = {ω ∈

N−1Y
i=1

Ai : z(ω) > xpN (bτ)}.
Let B be the event:

B = {(τ p1 , ..., τ pN−1) ∈ B1, τ pN ≤ bτ}.
Then, from (5) and FpN (bτ) > 0, it follows that Pr(B) > 0. Further, for type

profiles in the setB, the generated total contributions strictly exceed the standalone

contributions of agent pN (note that xpN (τ pN ) < xpN (bτ) for all τ pN < bτ , as xi(τ i)
is strictly increasing in τ i for all i). The proof is complete. Q.E.D.

The next lemma provides a condition under which the total contribution gen-

erated in the first (N − 1) stages of the sequential move game is strictly positive
with strictly positive probability so that the hypothesis and conclusion of Lemma

4 hold.

Lemma 5. Suppose that, given p = (p1, ..., pN) ∈ P ,

∃k ∈ {1, ..., N − 1} such that V 0
pN
(G) ≤ V 0

pk
(G), ∀G ∈ [0, xpN (τ)], (6)

and, further,

τ pkE(
1

τ pN
) > 1. (7)

Then, in every perfect Bayesian equilibrium of Γ(p), the expected total contribution

is strictly higher than θpN , the expected standalone contribution of agent pN .

Proof. In view of Lemma 4, it is sufficient to show that in any perfect Bayesian

equilibrium of Γ(p), the total contribution generated in the first (N − 1) stages is
strictly positive with strictly positive probability. Suppose, to the contrary, that

there exists a perfect Bayesian equilibrium of Γ(p) where the total contribution

generated in the first (N − 1) stages is zero almost surely. In that case, the con-
tribution generated at the end of the game is exactly the standalone contribution

xpN (τ) of the last mover pN , depending on her realized type τ ∈ ApN . Since for

any k ∈ {1, ..., N − 1}, agent pk contributes zero almost surely and τ pk is the upper

12



bound of the support of the distribution of her types, the first-order condition of

maximization implies:

τ pk

Z
ApN

V 0
pk
(xpN (τ))dFpN (τ) ≤ 1

which implies that

1 ≥ τ pk

Z
ApN

τ

τ
V 0
pk
(xpN (τ))dFpN (τ)

≥ τ pk

Z
ApN

τ

τ
V 0
pN
(xpN (τ))dFpN (τ), using (6)

= τ pk

Z
ApN

1

τ
dFpN (τ), using (1)

= τ pkE(
1

τ pN
)

which violates (7), a contradiction. Q.E.D.

The next result indicates that the hypothesis of Lemma 5 is always satisfied in

the symmetric case.

Corollary 2. Consider the symmetric case where Vi(G) = V (G), ∀i ∈ {1, ..., N},
and all agents have identical distribution of types, i.e. Fi = F, ∀i ∈ {1, ..., N}. For
every permutation p = (p1, ..., pN) ∈ P and every perfect Bayesian equilibrium of

the sequential move game Γ(p), the expected total contribution generated is strictly

higher than θpN , the expected standalone contribution of agent pN .

Proof. Follows directly from Lemma 5 and the fact that (6) and (7) are satisfied for

every permutation p of (1, ..., N). To see that (7) is always satisfied, use Jensen’s

inequality, the fact that f(x) = 1
x
is strictly convex on R++ and τ i = τ , ∀i ∈

{1, ..., N}. Q.E.D.

5 Comparison of contributions

We now present the paper’s main results comparing the expected total contribu-

tions generated in the simultaneous and sequential move contribution games. In

particular, we provide conditions under which the sequential move contribution

game leads to higher expected contributions.
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First, we provide sufficient conditions under which sequential move games that

satisfy a certain restriction on the order of moves (specifically, in terms of who moves

in the last stage) generate weakly greater expected total contributions compared

to the simultaneous move game.

Proposition 1. Consider any Bayesian-Nash equilibrium E of the simultaneous
move contribution game where some agent i makes a strictly positive contribution

τ i-almost surely. Then, every perfect Bayesian equilibrium of the N-stage sequential

move game Γ(p) where p = (p1, ..., pN) and pN = i, generates at least as much ex-

pected total contribution as in the Bayesian-Nash equilibrium E of the simultaneous
move game.

Proof. Follows immediately from Lemma 2 and Lemma 3. Q.E.D.

Next, we state sufficient conditions under which a sequential move game gen-

erates strictly higher expected total contributions compared to the simultaneous

move game.

Proposition 2. Consider any Bayesian-Nash equilibrium E of the simultaneous
move contribution game where some agent i makes a strictly positive contribution

τ i-almost surely. Consider any perfect Bayesian equilibrium bE of the sequential
move contribution game Γ(p) where p = (p1, ..., pN) and pN = i. Suppose, further,

that at least one of the following hold:

(a) (6) and (7) are satisfied;

(b) V 0
i (G) is strictly concave on [0, G] and there exists some agent j 6= i such

that in the equilibrium E of the simultaneous move contribution game Pr{τ j :
yj(τ j) > 0} > 0.

Then, equilibrium bE of the sequential move contribution game Γ(p) generates

strictly higher expected total contribution than equilibrium E of the simultaneous
move game.

Proof. If (a) holds, then the result follows from Lemma 2(i) and Lemma 5. If (b)

holds, then the result follows from Lemma 2(ii) and Lemma 3. Q.E.D.

There is a simple intuition behind the particular choice of the last mover. The

agent who does not free ride fully in the simultaneous move game, when placed

14



last in the sequential move game, offers an insurance against total contribution

falling too low. This agent would have made strictly positive contributions almost

surely in the simultaneous move game in anticipation of other agents’ types not

reflecting very high valuations with a considerable chance. But at the same time,

this agent would have restrained her contribution in the simultaneous move game

somewhat in case other agents happen to be of high-value types. So when this

particular agent moves last and other agents do not actually contribute much, she

ups her contribution beyond her one-shot equilibrium level (corresponding to her

type) because she can no longer rely on the possibility of other agents’ generous

contributions.

The next result follows immediately from Proposition 1 and Corollary 1:

Corollary 3. Consider any Bayesian-Nash equilibrium E of the simultaneous move
contribution game where every agent makes strictly positive contribution almost

surely. Then, for every p ∈ P , every perfect Bayesian equilibrium of the N-stage

sequential move game Γ(p) generates at least as much expected total contribution

as in equilibrium E of the simultaneous move game.

Corollary 3 clarifies that if the equilibrium of the simultaneous move game (to

which one compares the outcomes of the sequential games) is an “interior equilib-

rium" where all agents of “almost" all types contribute strictly positive amounts,

then there is no need to impose any restriction on the order of moves in the sequen-

tial game to ensure that it generates weakly higher expected total contributions.

Similarly, using Proposition 2 and Corollary 1, we have immediately:

Corollary 4. Consider any Bayesian-Nash equilibrium E of the simultaneous move
contribution game where every agent makes strictly positive contribution almost

surely. Suppose, further, that at least one of the following holds:

(a) (6) and (7) are satisfied, ∀p ∈ P ;

(b) V 0
i (G) is strictly concave on [0, G], ∀i ∈ {1, ..., N}.

Then, for every p ∈ P , every perfect Bayesian equilibrium of the N-stage sequential

move game Γ(p) generates strictly higher expected total contribution than equilib-

rium E of the simultaneous move game.

Corollary 4 indicates that if the equilibrium of the simultaneous move game is

an “interior equilibrium" then, under certain additional conditions, the sequential

15



move game generates strictly higher expected total contributions independent of

the order of moves.

Finally, using Proposition 1, Proposition 2 and Corollary 2, we have:

Corollary 5. Consider the symmetric version of the model where Vi(G) = V (G), ∀i ∈
{1, ..., N}, and all agents have identical distribution of types i.e., Fi = F, ∀i ∈
{1, ..., N}. Then the following hold.
(i) Consider any Bayesian-Nash equilibrium E of the simultaneous move con-

tribution game where some agent i makes a strictly positive contribution τ i-almost

surely. Then, every perfect Bayesian equilibrium of the N-stage sequential move

game Γ(p) where p = (p1, ..., pN) and pN = i, generates strictly higher expected

total contribution than in the equilibrium E of the simultaneous move game.
(ii) Consider any Bayesian-Nash equilibrium E of the simultaneous move con-

tribution game where every agent makes strictly positive contribution almost surely.

Then, for every p ∈ P , every perfect Bayesian equilibrium of the N-stage sequen-

tial move game Γ(p) generates strictly higher expected total contribution than in

equilibrium E of the simultaneous move game.

6 A special case: two agents, two types

Here the focus will be on a special case of our model with two agents and two

potential types. In particular, N = 2,

Vi(G) = V (G), Ai = {τL, τH}, i = 1, 2,

with

0 < πi = Pr[τ i = τH ] < 1.

Assumptions 1-3 outlined in section 2 continue to apply. Note that the standalone

contribution levels satisfy:

x1(τ) = x2(τ) = x(τ), τ = τL, τH .

In particular, G = 2x(τH).

Proposition 1 shows that there is a sequential game that generates weakly higher

expected total contribution than the simultaneous move game as long as there is
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at least one agent who contributes strictly positive amount in the simultaneous

move game for (almost) every realization of her type. If, in addition, π1 = π2 (the

symmetric case, see Corollary 5) or the requirements of Proposition 2 are satisfied,

then the sequential game generates strictly higher expected total contributions. To

elaborate on the content of these results, we now show that for the special case of

two agents and two types described above, under certain conditions, there is always

an agent who contributes strictly positive amount for all realizations of her type.

Proposition 3. Suppose that

V 0(0) >
1

1− π

∙
1

τL
− π · 1

τH

¸
, (8)

where π = max{π1, π2}. Then, in every Bayesian-Nash equilibrium of the simulta-

neous contribution game, at least one agent contributes strictly positive amount for

both realizations of her type.

Proof. Let y1(τ), y2(τ), τ = τH , τL, denote the equilibrium contributions of the

two agents in a Bayesian-Nash equilibrium of the simultaneous move game. The

first-order condition of maximization for agent i of type τ is:

πjτV
0(yi(τ) + yj(τH)) + (1− πj)τV

0(yi(τ) + yj(τL)) = 1, if yi(τ) > 0

≤ 1, if yi(τ) = 0

where i, j = 1, 2, j 6= i, τ = τH , τL. Using strict concavity of V (.) on [0, G], it is

easy to check that yi(τH) ≥ yi(τL) and, further, yi(τL) > 0 implies yi(τH) > yi(τL).

Suppose now that the proposition does not hold. Then, y1(τL) = y2(τL) = 0 so

that for i, j = 1, 2, j 6= i,

πjτLV
0(yj(τH)) + (1− πj)τLV

0(0) ≤ 1. (9)

Using Assumption 2,

πjτLV
0(x(τL)) + (1− πj)τLV

0(0) > 1, (10)

which implies that (comparing (9) and (10))

yj(τH) > x(τL) > 0, j = 1, 2.

From the first-order condition we have again for i, j = 1, 2, j 6= i,

πjτHV
0(yi(τH) + yj(τH)) + (1− πj)τHV

0(yi(τH)) = 1 (11)

17



so that τHV 0(yi(τH)) > 1, i = 1, 2. As π = max{π1, π2}, V 0(0) > V 0(yj(τH)), from

(9), we have for j = 1, 2,

1 ≥ πjτLV
0(yj(τH)) + (1− πj)τLV

0(0)

≥ πτLV
0(yj(τH)) + (1− π)τLV

0(0)

= τL

∙
1

τH
πτHV

0(yj(τH)) + (1− π)V 0(0)
¸

> τL

∙
1

τH
π + (1− π)V 0(0)

¸
, using (11),

which violates (8). Q.E.D.

An immediate consequence of this result is that in the symmetric case where

π1 = π2 = π, under condition (8), the symmetric Bayesian-Nash equilibrium must

be one where both types of both agents contribute strictly positive amounts. This

illustrates a concrete situation where the antecedents of Corollary 3, Corollary 4 and

Corollary 5(ii) that require almost sure interiority of equilibrium contributions (of

all agents) in the simultaneous move game can be satisfied (so that the sequential

move game may generate more of expected contributions than the simultaneous

move game independent of the order of moves).

If the simultaneous move game is such that every agent contributes zero with

positive probability (low realizations of τ i), then the results outlined in the previous

section no longer apply. For the special case considered in this section, we can show

that under certain conditions, the sequential contribution game generates higher

expected total contributions even though the equilibrium in the simultaneous move

game is one where both agents contribute zero when their realized type is τL.

Thus, the interiority of equilibrium contributions (for some agent) is not necessary

for higher contributions under the sequential form of the contribution game.

Proposition 4. Suppose that πi ≤ πj and

x(τH)

x(τL)
< min{ 1

πi
, 2πj +

1− πj
πi

}. (12)

Then, for p = (i, j), the expected total contribution generated in the unique per-

fect Bayesian equilibrium of the sequential game Γ(p) is strictly greater than that

generated in any Bayesian-Nash equilibrium of the simultaneous contribution game

where both agents contribute zero when their realized type is τL.
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Proof. Let y1(τ), y2(τ), τ = τH , τL, denote the equilibrium contributions of the

two agents in the simultaneous move game where y1(τL) = y2(τL) = 0. Using the

same arguments as in the proof of Proposition 3, it is easy to check that yk(τH) >

x(τL) > 0, τHV
0(yk(τH)) > 1, k = 1, 2 so that

x(τL) < yk(τH) < x(τH), k = 1, 2. (13)

The expected total contribution generated in this game is [πiyi(τH) + πjyj(τH)].

Further, from the first-order conditions:

πjV
0(yi(τH) + yj(τH)) + (1− πj)V

0(yi(τH)) =
1

τH
= V 0(x(τH)) (14)

πiV
0(yi(τH) + yj(τH)) + (1− πi)V

0(yj(τH)) =
1

τH
= V 0(x(τH)) (15)

and using the concavity of V 0(.) on [0, G] and Jensen’s inequality we have:

πj yj(τH) + yi(τH) ≤ x(τH) (16)

πi yi(τH) + yj(τH) ≤ x(τH). (17)

Also, from (14) and (15), V 0(yi(τH) + yj(τH)) < V 0(x(τH)) so that

yi(τH) + yj(τH) > x(τH). (18)

From (13) and (18),

yi(τH) + yj(τH) > max{x(τH), 2x(τL)}. (19)

Multiply (16) by πi and (17) by πj and add to obtain πiπj yj(τH) + πi yi(τH) +

πiπj yi(τH) + πj yj(τH) ≤ (πi + πj)x(τH), implying

πi yi(τH) + πj yj(τH)

≤ (πj + πi)x(τH)− πiπj(yi(τH) + yj(τH))

= [πjx(τH) + (1− πj)x(τL)] + [πi(x(τH)− πj(yi(τH) + yj(τH)))]− (1− πj)x(τL)

<|{z}
using (19)

πjx(τH) + (1− πj)x(τL) + [πi(x(τH)− πj(max{x(τH), 2x(τL)}))]− (1− πj)x(τL)

< πjx(τH) + (1− πj)x(τL). (using (12))

Therefore, the expected total contribution in this equilibrium of the simultaneous

move game πi yi(τH)+πj yj(τH) < πjx(τH)+(1−πj)x(τL), the expected standalone
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contribution of agent j. Finally, from Lemma 3, we know that in the sequential

move game Γ(p) where p = (i, j) i.e., agent j is the last mover, the expected total

contribution generated is at least as large as the expected standalone contribution

[πjx(τH) + (1− πj)x(τL)] of agent j. The proposition follows. Q.E.D.

Finally, we would like to point out that even if the sequential move game is

such that the agent (or agents) who contribute strictly positive amount for all

realization of types in the simultaneous move game move earlier than other agents,

the sequential move game may still generate higher expected total contribution

than the simultaneous move game. We illustrate this in the example (summarized)

below where within the framework of two agents and two types considered in this

section, we choose a specific quadratic functional form for the V (.) function.

An Example. Let

V (G) =

(
[1− (1−G)2], 0 ≤ G ≤ 1

1, G > 1.

Here, x(τ) = 1−1/(2τ), τ = τH , τL. Note that V 0(.) is linear (hence, concave) and

strictly decreasing (V (.) is strictly concave) on [0, 1].Here,G = 2− 1
τH
. Assumptions

1-3 are satisfied as long as τL > 1
2
, τH < 1.

Suppose πj > πi. Consider the sequential move game Γ(p) where p = (j, i) i.e.,

player j moves first and player i moves next. It can be checked that if

πi ≤ max
½
0, 1− τL

τH

∙
2τL +

q
4τ 2L − 1

¸¾
, (20)

then the first-mover (player j) of τH-type will make a strictly positive contribution

in the (unique perfect Bayesian equilibrium) sequential move game and the expected

total contribution generated is:

z̃ = (πi + πj)x(τH) + (1− πi)(1− πj)x(τL)− πiπj.

In the simultaneous move game, it can be shown that there is a unique Bayesian-

Nash equilibrium and in this equilibrium, agent j makes a strictly positive contribu-

tion for both realization of types, while agent imakes a strictly positive contribution

only if it is of τH-type. The expected total contribution in the simultaneous move

game ỹ is exactly equal to the expected standalone contribution of agent j i.e.,

ỹ = πjx(τH) + (1− πj)x(τL). Observe that z̃ − ỹ = [
1−πj
τL
− 1

τH
][πi
2
] > 0 if

πj < 1− τL
τH

. (21)
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Thus, even though the agent who has strictly higher probability of being τH-

type and contributes strictly positive amount almost surely in the simultaneous

move game moves first in the sequential move game and the agent who does not

contribute strictly positive amount almost surely in the simultaneous move game is

the last mover in the sequential move game, the sequential game generates (strictly)

higher expected total contribution relative to the simultaneous move game if (20)

and (21) hold. ||
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