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Ömer Özak†

Department of Economics

Southern Methodist University

May 15, 2012

Abstract

I study how boundedly rational agents can learn the solution to an
infinite horizon optimal consumption problem under uncertainty and
liquidity constraints. I present conditions for the existence of an opti-
mal linear consumption rule and characterize it. Additionally, I use an
empirically plausible theory of learning to generate a class of adaptive
learning algorithms that converges to the optimal rule. This provides an
adaptive and boundedly rational foundation to neoclassical consump-
tion theory.

Key Words: Adaptive learning models, bounded rationality, dynamic pro-
gramming, consumption function, behavioral economics, liquidity constraint,
Markov process
JEL classification: C6, D8, D9, E21

∗I wish to thank Peter Howitt for his continuous support, guidance, and encouragement.
Also, I wish to thank the participants at the Econometric Society’s LAMES 2008 and NASM
2009 meetings, and especially Kfir Eliaz, Glenn Loury, Tim Salmon, and David Weil, for
comments and helpful discussions on previous versions of the paper.

†Email: omer@omerozak.com. Send correspondence to: PO Box 0496, Southern
Methodist University, Dallas, TX 75275-0496, USA.



1 Introduction

Rationality is one of the main tenets of modern economics and though it

has proven fruitful in all areas of economics, it has recently been subject to

attacks both on theoretical and empirical grounds (see for example the section

Anomalies in the Journal of Economic Perspectives). One line of criticism

argues that the solution to certain problems under realistic settings is too

complex for agents to solve. For example, Arthur (1994) argues that “beyond

a certain level of complexity human logical capacity ceases to cope”. Similarly,

Conlisk (1996) in his survey on the use of bounded rationality in economics,

admits that “there are critical physiological limits on human cognition”; and

according to Simon (1990) “[b]ecause of the limits on their computing speeds

and power, intelligent systems must use approximate methods to handle most

tasks. Their rationality is bounded.”

The modern theory of consumption under liquidity constraints and un-

certainty, which is one of the main building blocks of many macroeconomic

models, is one area that clearly is subject to this criticism. For example, Car-

roll (2001) presents this theory and argues that “when there is uncertainty

about the future level of labor income, it appears to be impossible under

plausible assumptions about the utility function to derive an explicit solution

for consumption as a direct (analytical) function of the model’s parameters”.

Similarly, Allen and Carroll (2001) admit that “finding the exact nonlinear

consumption policy rule (as economists have done) is an extraordinarily diffi-

cult mathematical problem”.

In order to answer this line of critiques, economists have tried to pro-
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vide bounded rationality foundations to optimal behavior, especially within

game theory (Fudenberg and Levine, 1998), and macroeconomics (Evans and

Honkapohja, 2001; Sargent, 1993). Still, the study of how agents learn the

optimal policy to an infinite horizon dynamic programming problem under

uncertainty, and the consumption function in particular, has largely been ig-

nored or has generated negative results (Allen and Carroll, 2001; Lettau and

Uhlig, 1999).1 In contrast to the negative theoretical results, empirical and

experimental evidence suggests that agents do learn to behave as if they had

solved the optimal consumption problem (see Brown, Chua, and Camerer,

2009, and references therein).

In this paper I study an infinite horizon optimal consumption problem

under uncertainty, liquidity constraints, and bounded rationality. I follow the

previous literature in assuming that boundedly rational agents use a consump-

tion rule that is linear in wealth.2 I provide conditions for the existence of a

unique optimal linear consumption rule for a class of consumption problems.

Additionally, I show that the optimal linear consumption rule is learnable if

agents use an adaptive learning mechanism similar to the one proposed in the

numerical exercise of Howitt and Özak (2009).

1There is a large literature which studies dynamic programming problems in which
agents do not hold Rational Expectations, but are otherwise fully rational. The objective
of this literature is to understand the conditions under which the expectation mechanism
held by agents converges to Rational Expectations (Branch, Evans, and McGough, 2010;
Sargent, 1993). This is not the problem I am alluding to here. In this setting agents are
not able or willing to solve the optimal consumption problem, even if they had the correct
expectational mechanism.

2Gabaix (2011) has suggested that boundedly rational agents only use “sparse” rules of
behavior. In this case, the assumption is that agents focus only on wealth and disregard all
other variables. As can be seen from the results and proofs below, they can be extended to
include linearity in other variables, without affecting the results.

2



The approach to learning that I study, which I call the HO-algorithm, is

based on Euler-equations, where agents change their linear consumption rule in

response to differences between the marginal utility implied by the rule and the

discounted marginal utility of next period’s consumption under the rule. This

approach is close in spirit to “learning direction theory” (Selten and Buchta,

1999; Selten and Stoecker, 1986), which has been proposed as an explanation

for behavior observed in various experimental settings. According to that

theory, an agent’s success or failure changes her behavior in the direction that

increases her expected payoff in the following opportunity she has for action.

In the H-O algorithm, agents adjust their consumption rule if it failed to

equalize the marginal utilities of consumption between yesterday and today in

a way that agents regret. While both learning direction theory and the H-O

algorithm explain the direction of change, the H-O algorithm also tells agents

by how much they ought to change their behavior.

My approach differs from the one used by Lettau and Uhlig (1999) and

Allen and Carroll (2001), who use the accumulated performance of a rule as

measured by the discounted sum of utilities as a base for their learning mech-

anisms. In these papers, agents estimate the value function of their respective

problem in order to select the best rule. In particular, Lettau and Uhlig (1999)

use a setup similar to equation (3.3a) below, while Allen and Carroll (2001)

have a setup similar to equation (EV b).

Lettau and Uhlig (1999) assume that agents use an adaptive method to

update their estimates, which are the input of the classifier system they study.

Using methods of stochastic approximation, they characterize the set of rules
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that will be learnt by agents, as long as these rules are learnable. In particular,

they show that agents might not learn to use the rational rule, even if it is one

of the rules the agents are endowed with. Their analysis has two drawbacks,

besides the requirement of a finite set of states, which can be overcome applying

theorem 2.2 below. First, their approach requires the set of rules to be finite.

Second, they cannot determine welfare properties of the rules that are learnt,

especially when the rational rule is not available or if the rational rule is not

equivalent to a mix of the available rules.

Allen and Carroll (2001) assume agents learn by studying a finite family

of linear consumption rules and choosing the best among them. In particular,

they assume agents select a rule by making consumption choices using each rule

for many periods until they have an accurate estimator of the value function

for each rule and each initial wealth level. This is tantamount to assuming

agents perform something similar to a Monte Carlo simulation. They show

numerically that for their parameters there is a linear rule that is quite close

to the rational rule in terms of equivalent consumption. Additionally, their

simulations show that the learning mechanism, chooses the “best” rule among

the ones being studied by the agent. The major problem with their approach

is that their learning procedure requires too much time (4 million periods! )

to get close to the optimal rule, and thus “is not an adequate description of

the process by which consumers learn about consumer behavior” (Allen and

Carroll, 2001, p.268).

In their numerical simulations, Howitt and Özak (2009) show that for cer-

tain parameter configurations, agent’s welfare losses are low from following
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a simple linear consumption rule, and that if agents use the HO-algorithm

they can learn with high probability a linear consumption rule that is almost

optimal in less than 500 periods.

My analytical results generalize the numerical ones found by Howitt and

Özak (2009) and solve some of the problems raised in the literature. In partic-

ular, I present conditions for the existence of an optimal linear consumption

rule under liquidity constraints and bounded rationality and characterize it.

Additionally, I show that the HO-algorithm converges to the stationary points

of a particular ordinary differential equation (ODE). This implies that apply-

ing the HO-algorithm to any linear consumption rule in an uncountable and

compact set, for different levels of risk-aversion or impatience, with high prob-

ability will converge to the stationary points of this ODE. Clearly, if the ODE

has a globally asymptotically stable stationary point, then every linear con-

sumption will converge to it with probability one. Finally, I study the relation

between the optimal linear consumption rule and the stationary points of the

ODE. I find that generally they will be “close” to each other and will coincide

for a wide class of income processes. This seems to be the first positive answer

to the question “can boundedly rational agents learn to consume optimally?”.

There are various reasons why H-O algorithm seems like a good candi-

date for behavior under bounded rationality. First, as mentioned above, it is

similar to learning direction theory, which gives it empirical relevance. Sec-

ond, it allows the set of rules and states to be uncountable, while keeping the

informational and computational requirements for agents very low. On the

contrary, both requirements are increasing in the number of rules and states
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in the previous literature.

The paper proceeds as follows: Section 2 presents the model and proves

a new theorem on existence and uniqueness of invariant ergodic distributions

for certain Markovian dynamics; section 3 presents the family of consumption

rules to be studied and presents the conditions for the existence of an optimal

linear consumption function, section 4 presents the learning algorithm and

its properties; and section 5 concludes. All technical proofs are left for the

appendix.

2 The model

Time evolves discretely and is indexed by t. Agents are infinitely lived and

born with an initial wealth w0 > 0. Every period they consume an amount

ct out of their current wealth wt, receive interest on their savings and before

taking the next consumption decision, get an income yt+1, so that their wealth

evolves according to

wt+1 = Rt+1

(

wt − ct
)

+ yt+1. (2.1)

Agents are liquidity constrained, which implies that their current consumption

is given by

ct = c(wt) = min {wt, ĉ(wt)} (2.2)

where c(w) is a function that determines for each wealth level w ≥ 0 the

amount to be consumed. Consumption gives an agent a per period level of
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utility u(c), where u(·) is continuous, strictly increasing, concave, twice con-

tinuously differentiable, and such that for some K > 0 and3 φ : R+ → R++

‖u‖φ = sup
|u(c)|

φ(c)
< K, and

∥

∥u(n)
∥

∥

φ
= sup

∣

∣

∣

dnu(c)
dcn

∣

∣

∣

φ(c)
< K, for all n ≤ n∗, n∗ ≥ 3,

(2.3)

where φ(·) is a continuous function for which the level sets Cφ = {w ∈ R+ | φ(w) ≤ d}

for some d ∈ R+ are compact. She discounts her per period utility at a rate

β ∈ (0, 1) and gives her a lifetime utility level U =
∑∞

t=1 β
tu(ct).

Assumption A. The function ĉ(w) in (2.2) is strictly increasing and concave.

Below I will give specific forms to this function, but for now I can leave it

at this general level, since some results do not depend on the specifics of this

consumption policy.

Lemma 2.1. If there exists δ > 0 such that ĉ(w) − w > 0 for all w ∈ (0, δ)

and either (i) limw→∞ ĉ(w) − w = −∞ or (ii) ĉ(w) is strictly concave and

either (a) there does not exist w̃ such that ĉ(w̃) = 1 or (b) ĉ(w̃)/w̃ < 1 for

some w̃ ≥ 0, then there exists w̄ > 0 such that ĉ(w̄) = w̄.

Thus under the assumptions of this lemma, there exists w̄ > 0 such that

ct = c(wt)















wt if wt ≤ w̄

ĉ(wt) if wt > w̄

. (2.4)

3I assume the same K and φ satisfy the conditions below, but one can allow for different
functions φ to satisfy each of them.
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For simplicity, let Rt+1 = R for all t = 0, 1, 2, . . . and let Y denote the set

of values which the income process can take.

Assumption B. The income process, {yt} is such that yt ∈ Y is identically

and independently distributed across periods in one of the following two ways:

(i) Y = {y1, y2, . . . , yn}, where y1 ≤ y2 ≤ · · · ≤ yn, and each yi occurs with

probability Γi > 0.

(ii) Y = [y1, yn) ⊆ R+ with distribution Γ that is absolutely continuous with

a lower semicontinuous density γy on Y .

Denote by B(Y) the Borel σ-algebra of Y and for any A ∈ B(Y) let Γ(A)

denote the probability of event A under (i) or (ii). We will use y = y1 and

ȳ = yn whenever the use of a double superscript might be confusing.

Clearly, under assumptions A and B, the wealth process {wt} is Markov

with state space (W,B(W)) = (R+,B(R+)) and transition probability kernel

P defined by

P (w,A) = Γ
(

{

A−R
(

w − c(w)
)}

∩ Y
)

, ∀w ∈ W, A ∈ B(W). (2.5)

P (w,A) gives the probability of going from state w to a set A in one period.

Notice that if w ∈ [0, w̄], then P (w,A) = Γ(A ∩ Y) independent of w, i.e.

[0, w̄] is an atom (Meyn and Tweedie, 1993, p.103). If y1 ≤ w̄, then as will be

seen from the proof of Theorem 2.2 this set is an accessible atom. Define

Al =
{

w ∈ W | w = R
(

w − c(w)
)

+ yl
}
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wl =















supAl if Al 6= ∅

∞ otherwise

, l = 1, n

lw =















inf Al if Al 6= ∅

∞ otherwise

, l = 1, n.

Notice that y1 ≤ 1w < nw ≤ wn ≤ ∞, w1 < ∞. If wn < ∞ and 1w < w1,

then wn < w1.

Theorem 2.2. If assumptions A and B hold, then:

(i) If wn < ∞, then there exists a unique invariant probability measure π

on W and a π-null set N such that for any initial distribution of initial

wealth λ,4 such that λ(N) = 0, and

∥

∥

∥

∥

∫

λ(dw)Pm(w, ·)− π(·)

∥

∥

∥

∥

→ 0, m→ ∞.

(ii) If wn = ∞, then P (wt → ∞) = 1.

The strength of this theorem is that, unlike most of the literature, it does

not require wealth to be bounded for the existence of a unique ergodic distri-

bution and it gives an easily verifiable condition. Clearly a necessary condition

for the existence of a unique invariant distribution, under this theorem is:

Assumption C. yn <∞.

4Here ‖·‖ denotes the total variation norm, i.e. if λ is a signed measure on B(W) then

‖λ‖ := sup
f :|f |≤1

|λ(f)| .
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Under this assumption, if wn < ∞, then the stationary distribution π

satisfies

π(A) =















> 0 if A ∩ [y1, nw] 6= ∅

= 0 if A ∩ [y1, nw] = ∅

, π
(

[y1, nw]
)

= 1. (2.6)

3 Consumption rules

We will analyze the behavior of two families of consumption functions, one

generated by the optimal solution to the problem

max
s.t.

∞
∑

t=0

E0

[

βtu(ct)
]

(3.1a)

wt+1 = Rt+1(wt − ct) + yt+1 (3.1b)

0 ≤ ct ≤ wt (3.1c)

w0 ≥ 0 given,

which I will denote by c∗(w) and the family of linear consumption functions

of the form

cb(α,w) = cb(α0, α1, w) = min {α0 + α1w,w} , α0 ∈ [0, ᾱ0], α1 ∈ [0, ᾱ1],

(3.2)

where I will use α = (α0, α1) whenever this does not create confusion. Clearly,

if α1 ≥ 1, then cb(α,w) = w.

Given the recursive nature of (3.1), c∗(w) can be analyzed as the solution
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to

v(w) = max
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) | c, w
]

(3.3a)

c∗(w) = argmax
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) | c, w
]

(3.3b)

where h(c, w, y) = R
(

w− c
)

+y. I shall assume that under assumptions B and

C, the optimal consumption function is continuous, concave and such that

c∗(w) =















w if w ≤ w̄

c(w) if w > w̄

(3.4)

for a unique w̄ > y1 and a strictly concave function c(w), which satisfies

the first order conditions of (3.3a). Additionally, I assume that wn < ∞

under the optimal rule, i.e. there exists a solution to the equation wn =

R(wn − c∗(wn)) + yn. In particular, consider the following case:

Theorem 3.1. If Rβ < 1 and

u(ct) =















c1−θ
t −1

1−θ
if θ 6= 1

ln ct if θ = 1

,

then c∗(w) satisfies all the required properties.

Clearly, the function c∗(w) is independent of w0, so for any rational agent, if

she knows that w0 is distributed according to some distribution λ, her ex-ante
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expected lifetime utility, before she learns the value of w0, is given by

EV ≡

∫

W

v(w)λ(dw). (EV)

Define

CE ≡ u−1(EV · (1− β)) (CE)

as the certainty equivalent of this utility. If the wealth process generated by

c∗(w) satisfies wn < ∞, then from theorem 2.2 there exists a unique ergodic

invariant distribution over wealth π∗. In this case, let EV ∗ and CE∗ be the

values implied by (EV) and (CE) when λ = π∗. I will use deviations from

CE∗ below in order to measure the performance of the different linear rules.

For a given w0 and a fixed linear rule cb(α,w) with parameters α0, α1 the

expected life-time utility of an agent is

U(α0, α1, w0) =

∞
∑

t=0

E0

[

βtu
(

min {α0 + α1wt, wt}
)]

, (3.5)

where wt evolves according to (3.1b). Just as I did for c∗(w), I can define the

ex-ante expected lifetime utility and the certainty equivalent for a given rule

as

EVα0,α1
≡

∫

W

U(α0, α1, w)λ(dw) (EV b)

CEα0,α1
≡ u−1(EVα0,α1

· (1− β)) (CEb)
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If λ = π∗ I will denote them as EV ∗
α0,α1

and CE∗
α0,α1

. If the linear consumption

rule implies wn <∞, let πα0,α1
be the unique invariant distribution determined

by the rule and denote by EV b
α0,α1

and CEb
α0,α1

the ex-ante expected lifetime

utility and the certainty equivalent when λ = πα0,α1
and the linear consumption

rule is used, and EV ∗
b and CE∗

b when the optimal consumption rule is used.

Under cb(α,w) a necessary condition for wn <∞ is that either

w̄α ≡
α0

1− α1
≥ yn or α1 ≥

R− 1

R
(3.6)

in which case, the process is positive Harris recurrent. Notice also that if

α0

1−α1

≥ yn, then yn = nw = wn and the consumer is always constrained, which

cannot be optimal. Thus, I shall assume α1 < 1.In order to be able to prove the

existence of an optimal linear consumption function I will need the following

assumptions.

Assumption D. Let γy be continuously differentiable, Lipschitz continuous

and such that
∫

yγy(y)dy <∞.

Assumption E.
∫

Y
γy(y)φ(y)dy <∞ where φ(·) is defined in (2.3).

Assumption F. The random variable ξα(w) = φ(w′)/φ(w), where w′ =

R(w − cb(α,w)) + y, is uniformly integrable in w and α.

Notice that CE∗ ≥ CE∗
α for any α, while CE∗

α ≥ CE∗
α′ if, and only if,

EV ∗
α −EV

∗ ≥ EV ∗
α′−EV ∗, and similarly for the other stationary distributions.

Theorem 3.2. (i) There exists (α∗
0, α

∗
1) ∈ [0, ᾱ0]× [0, ᾱ1] which solves

max
(α0,α1)∈[0,ᾱ0]×[0,ᾱ1]

EV ∗
α0,α1

− EV ∗. (3.7)

13



(ii) If assumptions B.(ii), C, D and F hold and either (a) y1 > 0, or (b)

assumption E holds, then there exists (α∗
0, α

∗
1) ∈ [0, ᾱ0]× [(R− 1)/R, ᾱ1]

which solves

max
(α0,α1)∈[0,ᾱ0]×[(R−1)/R,ᾱ1]

EV b
α0,α1

− EV ∗
b . (3.8)

(iii) If assumptions B.(ii), C, D and F hold and either (a) y1 > 0 or (b)

assumption E holds, then there exists (α∗
0, α

∗
1) ∈ [0, ᾱ0]× [(R− 1)/R, ᾱ1]

which solves

max
(α0,α1)∈[0,ᾱ0]×[(R−1)/R,ᾱ1]

EV b
α0,α1

− EV ∗. (3.9)

The linear consumption rule implied by (α∗
0, α

∗
1), c

b(α∗, w), is called the

optimal linear consumption rule.

Howitt and Özak (2009) show that in their numerical exercise, there is little

difference in these various measures. From a normative perspective it might

make more sense to focus on problem (3.9), since it measures the willingness

of agents to pay in order to adopt the optimal consumption rule c∗(w) by com-

paring the utilities generated in the stationary distributions under bounded

rationality and unbounded rationality. Analytically, most results for prob-

lem (3.9) can be generated from the analysis of problem (3.8) by adjusting

certain steps in the proof, in particular, by setting v(wt) = 0 whenever this

term appears in the proofs. Additionally, notice that if α∗ solves (3.8), then it

also solves (3.9). So, I shall not present proofs for them and focus mostly on
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problem (3.8).

In order to be able to relate the solutions to the HO-learning algorithm,

it is useful to have some characterizations of the optimal linear rule. For this,

the following proposition might prove useful.

Proposition 3.3. If limt→∞ βtE0

[

U(α0, α1, wt) − v(wt)
]

= 0 for all (α0, α1)

then:

(i)

U(α0, α1, wt)− v(wt) =

E0

[

∞
∑

j=0

µ(wt+j)(c
b(wt+j)− c∗(wt+j))− kt+j(c

b(wt+j)− c∗(wt+j))
2

]

.

(3.10)

(ii)

EV ∗
α0,α1

−EV ∗ =

∫

W

E0

[

∞
∑

j=0

βj
(

µ(wt+j)(c
b(wt+j)− c∗(wt+j))

−kt+j(c
b(wt+j)− c∗(wt+j))

2
)]

π∗(dwt).

(3.11)

(iii)

EV b
α0,α1

−EV ∗
b =

∞
∑

j=0

βj

∫

W

[

µ(wt+j)(c
b(wt+j)− c∗(wt+j))

−kt+j(c
b(wt+j)− c∗(wt+j))

2πα0,α1
(dwt+j)

]

.

(3.12)
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Since the stationary distribution has positive mass only on [y1, nw], this

proposition implies that:

Corollary 3.4. The solution (α∗
0, α

∗
1) to (3.8) belongs to the set

Λ = {(α0, α1) ∈ [0, ᾱ0]× [(R − 1)/R, ᾱ1] | α0 + α1w̄ ≥ w̄} ,

and thus, solves the problem

min
(α0,α1)∈Λ

∞
∑

j=0

βj

∫

W

[

kt+j(c
b(wt+j)− c∗(wt+j))

2πα0,α1
(dwt+j)

]

, (3.13)

which is equivalent to

min
(α0,α1)∈Λ

∫

W

[

ks(c
b(ws)− c∗(ws))

2πα0,α1
(dws)

]

(3.14)

Thus, under our assumptions, the bounded rationality solution minimizes

the expected squared difference from the optimal consumption function, which

allows some additional and useful characterizations. In particular,

Theorem 3.5. If (α∗
0, α

∗
1) solves (3.8), then it also solves the following problem

min
(α0,α1)∈Λ

∫

W

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)2

πα(dwt), (3.15)
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If the solution is interior, then (α∗
0, α

∗
1) satisfies

∫

W

−2u′′(cb(wt))
(

βREtu
′(cb(wt+1))− u′(cb(wt))

)







1

wt






πα(dwt)

+

∫

W

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)2







∂πα(dwt)
∂α0

∂πα(dwt)
∂α1






= 0.

(3.16)

Rewrite this last condition as

f0(α
∗) + g0(α

∗) = 0, f1(α
∗) + g1(α

∗) = 0

where

f0(α) =

∫

−2u′′(cb(wt))
(

βREtu
′(cb(wt+1))− u′(cb(wt))

)

πα(dwt)

g0(α) =

∫

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)2∂πα
∂α0

(dwt)

f1(α) =

∫

−2u′′(cb(wt))
(

βREtu
′(cb(wt+1))− u′(cb(wt))

)

wπα(dwt)

g1(α) =

∫

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)2∂πα
∂α1

(dw).

Call cb(αq, w) a quasi-optimal linear consumption rule, if αq = (αq
0, α

q
1)

satisfies

f0(α
q) = 0 and f1(α

q) = 0.
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Since f0 and f1 are C 1, if

∣

∣

∣

∣

∣

∣

∣

∂
∂α0

f0(α
∗) ∂

∂α1

f0(α
∗)

∂
∂α1

f1(α
∗) ∂

∂α1

f1(α
∗)

∣

∣

∣

∣

∣

∣

∣

6= 0,

then by the Implicit Function Theorem, there exist C 1 functions α0(ζ0, ζ1) and

α1(ζ0, ζ1) such that

α0(g0(α
∗), g1(α

∗)) = α∗
0, α1(g0(α

∗), g1(α
∗)) = α∗

1,

f0(α(ζ0, ζ1)) + ζ0 = 0, f1(α(ζ0, ζ1)) + ζ1 = 0

for (ζ0, ζ1) in a certain open set around ζ∗ = (g0(α
∗), g1(α

∗)). Call this open

set Λζ∗ . Thus, I have proven that

Proposition 3.6. A quasi-optimal linear consumption function exists if (0, 0) ∈

Λζ∗.

But this implies that

Corollary 3.7. If
∣

∣

∣

∣

∣

∣

∣

∂
∂α0

f0(α)
∂

∂α1

f0(α)

∂
∂α1

f1(α)
∂

∂α1

f1(α)

∣

∣

∣

∣

∣

∣

∣

6= 0,

for all α ∈ [0, ᾱ0] × [(R − 1)/R, ᾱ1], then there exists a quasi-optimal linear

consumption function.

Furthermore,

Corollary 3.8. If the objective function in (3.15) is a strictly convex and
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twice continuously differentiable function of α, then there exists a unique quasi-

optimal linear consumption function.

In the setting of the last two corollaries, the functions α0(ζ0, ζ1) and α1(ζ0, ζ1)

are open maps, and so, if (g0(α
∗), g1(α

∗)) is close to (0, 0), then so is α∗ from

αq. In particular, let Λ̄ζ = ∩∞
n=0An ⊆ Λζ∗, where {An} is a sequence of con-

vex and closed subsets of Λζ∗ such that (g0(α
∗), g1(α

∗)), (g0(α
q), g1(α

q)) ∈ An

for all n ≥ 0, and An ⊆ An−1. Then ‖αq − α∗‖ ≤ supα∈Λ̄ζ∗
‖α− α∗‖ ≤

supα,α′∈Λ̄ζ∗
‖α− α′‖ = d(Λ̄ζ∗), i.e. the distance between the quasi-optimal and

optimal consumption rules is smaller than the diameter of the set Λ̄ζ .

Corollary 3.9. If the objective function in (3.15) is a strictly convex and twice

continuously differentiable function of α, then the difference in the objective

function of (3.8) or (3.9) evaluated at α = α∗ and α− αq satisfies

0 ≤ (EV b
α0,α1

− EV ∗
b )|α∗ − (EV b

α0,α1
− EV ∗

b )|αq ≤ k1d(Λ̄ζ∗),

and

0 ≤ EV b
α∗ −EV b

αq ≤ k2d(Λ̄ζ∗),

where k1 and k2 are upper bounds of the second derivatives of the objective

functions.

Thus, the “flatter” the objective functions are, the closer is the utility un-

der the quasi-optimal linear function to the optimal linear one. This result

is similar to the one found by Akerlof and Yellen (1985) in their analysis of

bounded rationality. Clearly, if (g0(α
∗), g1(α

∗)) = (0, 0), then α∗ = αq. Al-
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though this requirement might not hold in general, the following result proves

that it holds for certain classes of stationary distributions πα.

In particular, Heidergott and Vázquez-Abad (2008) show that the measure-

valued derivative of a distribution πα can be written as a triplet (kα, π
−
α , π

+
α ),

where kα ∈ R++, and π−
α , π

+
α are two probability measures. For example,

if income is uniformly distributed between y1 and yn, then γ(y) = 1
yn−y1

,

πα(w) =
w−y1
nw−y1

, and ∂πα

∂αi
, i = 0, 1, can be written as

(kiα, π
−
α , π

+
α ) =

(

1
nw − y1

∂ nw

∂αi
, δ(nw),

w − y1

nw − y1

)

i = 0, 1.

Theorem 3.10. Assume that

∂πα
∂α0

= (k0α, π
−
α , π

+
α ), and

∂πα
∂α1

= (k1α, π
−
α , π

+
α ), (3.17)

where k0 6= k1. If α∗ is an optimal linear consumption function, then it is a

quasi-optimal linear consumption function.

If agents are boundedly rational, so that they are unable (or unwilling) to

solve the maximization problem in (3.1) or in (3.8), it would seem that only by

chance would agents behave optimally. In the next section I study the learning

algorithm proposed by Howitt and Özak (2009) for boundedly rational agents

and show conditions that allow agents to learn the quasi-optimal and optimal

linear rules.
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4 Learning the optimal consumption rule

The algorithm proposed by Howitt and Özak (2009) assumes that agents

change their consumption rule based on how close marginal utility under that

consumption rule is from next period’s marginal utility of consumption, i.e. on

βu′(min {wt+1, α
0
t + α1

twt+1})−u′(α0
t +α1

twt) where wt+1 evolves according to

(3.1b). Letting ct+1 = min {wt+1, α
0
t + α1

twt+1} denote actual consumption in

period t+ 1 given the current rule, the algorithm assumes that agents change

their consumption rule, given their current information, if they would have re-

gretted using this rule given their actual consumption and last period’s wealth,

where their regret is measured by the difference βu′(ct+1)− u′(α0
t + α1

twt).

This method of learning uses very little information, especially when com-

pared with methods that require an estimate of the value function (3.3a) as

in Allen and Carroll (2001), or which compare many rules simultaneously as

in Lettau and Uhlig (1999). The intuition behind the algorithm is the same

that early marginalists used to explain how consumption across goods was

determined. Agents would like to make the Euler equation hold with equality

every period in order to assure they are behaving optimally, unless they are

liquidity constrained. A nice quality of the algorithm is that agent’s require

very little information and keep track of only a few values, independently of

the number of states or of the possible number of linear consumption rules.

Given some initial consumption rule with parameters (α0
0, α

0
1), some initial

wealth w0 and some past consumption c0, agents update their consumption
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rule using the following learning rule5







α0
t+1

α1
t+1






=







α0
t

α1
t







+ κtM
−1
t

[(

βRu′(ct+1)− u′(α0
t + α1

twt)
)

u′′(α0
t + α1

twt)
]







1

wt







(DG)

Mt+1 =Mt + κt
{[(

u′(α0
t + α1

twt)− βRu′(ct+1)
)

u′′′(α0
t + α1

twt)

+
(

u′′(α0
t + α1

twt)
)2
]

·







1 wt

wt w2
t






−Mt











for all t ≥ 0. The algorithm can be seen as an approximation to the recursive

representation of the solution of the following non-linear least squares problem6

min
s.t.

1

t− 1

t−2
∑

k=0

(

u′(α0
t + α1

twk)− βRu′(ck+1)
)2
. (NLS)

The literature on stochastic approximations to recursive algorithms (Ben-

veniste, Métivier, and Priouret, 1990; Kushner and Yin, 2003) studies the dy-

namics of recursive algorithms like (ODE-DG) by using a differential equation

obtained by averaging the dynamics of the algorithm as time evolves. In this

5I will present the same version of the algorithm used by Howitt and Özak (2009)
since my results can be extended to cases when the matrix does evolves differently, and
the same proofs can be used if it stays constant. This is particularly important, since
their assumption on the evolution of Mt seems to be the less believable for behavior under
bounded rationality. The main reason for using this version is that it seems to generate the
fastest rates of convergence in numerical simulations.

6Ljung and Söderström (1983) provide a general analysis of this type of algorithms and
how one can relate the HO-algorithm to the solution of this minimization problem.
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case, the following ordinary differential equation related to the HO-algorithm

(DG) is of interest:









dα0

∂τ

dα1

∂τ









=

∫

W

M−1
[(

βREtu
′(c(w′))− u′(α0 + α1w)

)

u′′(α0 + α1w)
]

·

·







1

w






πα0,α1

(dw) (ODE-DG)

dM

dτ
=

∫

W

([(

u′(α0 + α1w)− βREtu
′(c(w′))

)

u′′′(α0 + α1w)

+
(

u′′(α0 + α1w)
)2
]

·







1 w

w w2






−M






πα0,α1

(dw)

where Et denotes the expectation using Γ, c(w′) = min {w′, α0 + α1w
′} and

w′ = R(w − c(w)) + y. I assume that (α(t),M(t)) belongs to an open set

Q ⊂ [0, ᾱ0] × [(R − 1)/R, ᾱ1] × R
4. Let h(α,M) = (h1(α,M), h2(α,M))T

denote the right hand side of (ODE-DG), (αe
0, α

e
1,M

e) denote an equilibrium

of (ODE-DG), and let ∇h1(α
e,Me) denote the derivative of the first equation

in (ODE-DG) with respect to (α0, α1) evaluated at the equilibrium.

Assumption G. (αe
0, α

e
1,M

e) is locally unique and ∇h1(α
e,Me) is symmetric

and definite negative.

Proposition 4.1. If the assumptions of theorem 3.2.(ii) and assumption G

hold, then (αe
0, α

e
1,M

e) is locally asymptotically stable.

Let Qe = Qe
α ×Qe

M be the domain of attraction of (αe
0, α

e
1,M

e).
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Corollary 4.2 (Krasovskĭı (1963)). Under the assumptions of proposition 4.1,

there exists a function L on Qe of class C 2 such that

(i) L(αe,Me) = 0, L(α,M) > 0 for all (α,M) ∈ Qe, (α,M) 6= (αe, me).

(ii) ∇L(α,M) · h(α,M) < 0 for all (α,M) ∈ Qe, (α,M) 6= (αe, me).

(iii) L(α,M) → ∞ if (α,M) → ∂Qe or ‖(α,M)‖ → ∞.

The following assumptions are required in order to analyze the convergence

of the algorithm to (αe,Me).

Assumption H. {κt}t is a decreasing sequence of positive real numbers, such

that
∑

t κt = ∞ and
∑

t κ
2
t <∞.

Assumption I. y1 > 0 and
∫

y2Γ(dy) <∞.

For any b ∈ R+, let K(b) = {(α,M) ∈ Qe | L(α,M) ≤ b}, and τ(b) =

inf {n ∈ N | (αn,Mn) /∈ K(b)}. Also let Q1 ⊂ Q and Q2 ⊆ Qe be compact

sets and

Ω(Q1,Q2) = {(αn,Mn) ∈ Q1 for all n, (αn,Mn) ∈ Q2 for infinitely many n} .

Theorem 4.3. Let b < b1 < b2 < ∞. If the assumptions of proposition 4.1

and assumptions H and I hold, then:

(i) There exist constants B3 and s such that for all (α0,M0) ∈ K(b1) and

all w ∈ W,

Pw,(α0,M0)({τ(b2) <∞}) ≤ B3(1 + |w|s)
∞
∑

k=1

κ2k. (4.1)
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(ii) For all (α0,M0) ∈ K(b) and all w ∈ W, (αn,Mn) → (αe,Me) Pw,(α0,M0)-

a.s. on {τ(b2) = ∞}.

(iii) There exist constants B4 and s such that for all n ≥ 0, all (α0,M0) ∈ Q2

and all w ∈ W

Pn,w,(α0,M0)({(αn,Mn) → (αe,Me)}) ≥ 1− B4(1 + |w|s)
∞
∑

k=n+1

κ2k. (4.2)

(iv) For all w ∈ W, (α0,M0) ∈ Q2, (αn,Mn) → (αe,Me) Pw,(α0,M0)-a.s. on

Ω(Q1,Q2).

Pw,(α0,M0) denotes the distribution of {(wk, (αk,Mk))}k≥0 starting from

(w, (α0,M0)) and Pn,w,(α0,M0) denotes the distribution of

{(wn+k, (αn+k,Mn+k))}k≥0 starting from (w, (α0,M0)).

This theorem gives bounds on the probability of convergence of the algo-

rithm to the equilibrium of (ODE-DG) and of escaping its domain of attrac-

tion. It additionally ensures the convergence of the algorithm to the equilib-

rium when the initial conditions are in some subset of the domain of attraction.

If a projection facility is used, such that if (αt,Mt) /∈ Qe, then it projects the

parameters into Qe, then a much stronger result follows:

Corollary 4.4. (αt,Mt) converges to (αe,Me) a.s.

Notice that h1(α
e,M) = 0 for any matrix M . Thus, the matrix M plays

only a role on the convergence of the system to αe, but not on its value. This

is particularly important, since one of the least appealing aspects of the H-

O algorithm as a norm of behavior under bounded rationality is the way in

25



which Mt is updated. Clearly, one can replace Mt and its updating process

for a simpler process without affecting the value of αe nor the convergence of

the algorithm to it, as long as one maintains the stability properties shown

in the previous results. In particular, letting Mt = M̄ for all t ≥ 0 such that

∇h1(α
e, M̄) is symmetric and definite negative, all the previous results hold

without change.7,8

Clearly, any asymptotic equilibrium of (ODE-DG) is of interest for the

analysis only in so far as it bears some relation with (α∗
0, α

∗
1) or (α

q
0, α

q
1). The

following theorem summarizes the main result:

Theorem 4.5. α = (α0, α1) is a quasi-optimal linear consumption rule if,

and only if, it is an equilibrium of (ODE-DG). If, additionally, the conditions

of theorem 3.10 are satisfied, then the optimal linear consumption rule is an

asymptotically stable equilibrium of (ODE-DG).

So, under the assumptions of this theorem, agents employing the H-O

algorithm do learn to behave as if they were optimizing.

5 Conclusions

The assumption of complete and perfect rationality has increasingly been criti-

cized due, in part, to the high complexity of many solutions in economic models

under this assumption. In response, models of bounded rationality and learn-

ing have recently flourished in economics, though the study and application

7This does not mean that the rate of convergence to the equilibrium is unchanged.
Numerical simulations realized by the author suggest than under the original H-O algorithm
convergence is much faster than under fixed arbitrary matrices.

8For example, let M̄ = k · I2×2, where k ∈ R+ and I2×2 is the 2× 2 identity matrix.
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of these ideas to approximate solutions of stochastic dynamic programming

problems is still an emerging area. In particular, the study of consumption-

saving decisions under uncertainty and liquidity constraints has been pursued

by only a couple of papers with limited or negative results.

In this paper I have shown that boundedly rational agents, who use a linear

consumption function, are liquidity constrained, and have uncertain income,

can learn to behave “optimally” by following the learning procedure proposed

by Howitt and Özak (2009). In particular, I have provided conditions for

the existence of an optimal linear consumption function and for the learning

algorithm to converge to this optimum for a wide class of utility functions and

income processes.

This is a first step towards studying the possibility of learning the solution

to more complex dynamic programming problems. The problem at hand was

simplified by the almost piecewise linear nature of the optimal consumption

function, which allowed the use of a simple piecewise linear function as a norm

for behavior under bounded rationality. It is my conjecture that it is possible

to apply the techniques of this paper to learn the optimal solutions to more

complex problems by using more general piecewise linear functions.
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Ljung, L., and T. Söderström (1983): Theory and practice of recursive

identification, vol. 4. MIT Press, Cambridge, Mass. 22

Meyn, S. P., and R. L. Tweedie (1993): Markov chains and stochastic

stability. Springer. 8, 34, 35, 39, 43

Rudin, W. (1966): Real and complex analysis, McGraw-Hill series in higher

mathematics. McGraw-Hill, New York. 39

Sargent, T. J. (1993): Bounded rationality in macroeconomics: Thomas J.

Sargent. Clarendon Press, Oxford. 2

Selten, R., and J. Buchta (1999): “Experimental sealed bid first price

auctions with directly observed bid functions,” in Games and human behav-

ior: Essays in honor of Amnon Rapoport, ed. by R. Z. David V. Budescu,

Ido Erev, chap. 5, pp. 79–102. Psychology Press, Mahwah NJ. 3

Selten, R., and R. Stoecker (1986): “End behavior in sequences of finite

Prisoner’s Dilemma supergames A learning theory approach,” Journal of

Economic Behavior & Organization, 7(1), 47–70. 3

Simon, H. A. (1990): “Invariants of Human Behavior,” Annual Reviews in

Psychology, 41(1), 1–20. 1

Stokey, N. L., R. E. Lucas, and E. C. Prescott (1989): Recursive

methods in economic dynamics. Harvard University Press, Cambridge, Mass.

35, 38

31



Appendix

A Proofs

Proof of Lemma 2.1. (i) This follows directly from the intermediate value theorem.

(ii) We need to analyze two cases:

(a) If there does not exist w̃ such that c(w̃) = 1, then it must be that 0 < c(w) < 1

for all w > 0 and so limw→∞ c(w)−w = −∞ which from our previous result in (i)

proves what I wanted.

(b) Since c(w) is strictly increasing and strictly concave, I have that for any increasing

sequence {wn}
∞
n=1 such that wn → ∞, for any k ≥ 1 and l > k,

+∞ ≥
c(wl)− c(wk)

wl − wk
>
c(wl+1)− c(wk)

wl+1 − wk
> · · · > lim

n→∞

c(wn)− c(wk)

wn − wk
≥ 0.

Clearly, the sequence
{

c(wl)−c(wk)
wl−wk

}

is decreasing and bounded below, so that it

converges to τk = infn
c(wn)−c(wk)

wn−wk
. On the other hand, I have that for any w < w′ <

w′′

c(w′)− c(w)

w′ − w
>
c(w′′)− c(w′)

w′′ − w′

so that the sequence {τk}
∞
k=1 is also decreasing and bounded below, thus the se-

quence converges to τ ∗ = infk τk.

Notice that if τ ∗ ≥ 1, then

1 >
c(w̃)

w̃
=
c(w̃)− c(0)

w̃ − 0
≥ τ0 ≥ τ ∗ ≥ 1

which is clearly a contradiction.

Thus, τ ∗ < 1.

Fix w∗ > ŵ, and define for w > 0 the function

f(w) =
c(w∗)− c(ŵ)

w∗ − ŵ
(w − ŵ) + c(ŵ)
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which is the linear function that goes through (ŵ, c(ŵ)) and (w∗, c(w∗)). We have

that limw→∞ f(w) − w = −∞ and also that f(w) ≥ c(w) for all w > w∗ by the

strict concavity of c(·). Thus, again limw→∞ c(w)− w = −∞.

Proof of Theorem 2.2. Here I present and prove a more general version of the theorem. For

that, let {wt} be a Markov process with state space (W,B(W)) = (R+,B(R+)), defined as

wt+1 = h(wt) + yt+1

for some increasing and convex (or concave) function h(w) and transition probability kernel

P defined by

P (w,A) = Γ
(

{

A− h(w)
)}

∩ Y
)

, ∀w ∈ W, A ∈ B(W). (A.1)

P (w,A) gives the probability of going from state w to a set A in one period. Define

Al =
{

w ∈ W | w = h(w) + yl
}

Theorem A.1. If assumption B holds, then:

(i) If wn < ∞, then there exists a unique invariant probability measure π on W and a π-

null set N such that for any initial distribution of initial wealth λ,9 such that λ(N) = 0,

∥

∥

∥

∥

∫

λ(dw)Pm(w, ·)− π(·)

∥

∥

∥

∥

→ 0, m→ ∞.

(ii) If wn = ∞, then P (wt → ∞) = 1.

Proof. We present the proof for the case when h(w) is convex. For the other case, just revert

the roles of w1 and wn.

(i) Assume that wn <∞. We need to analyze two cases:

9Here ‖·‖ denotes the total variation norm, i.e. if λ is a signed measure on B(W) then

‖λ‖ := sup
f :|f |≤1

|λ(f)| .
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(a) If 1w < w1, let A∗ = [1w,nw], A0 = [0,1w), A1 = (nw,w1) and A∞ = [w1,∞).

Then

P (w,A∗)

{

= 1 if w ∈ A∗ ∪ A0

= 0 if w ∈ A∞
, P (w,A∞)

{

= 1 if w ∈ A∞

= 0 if w ∈ A0 ∪ A∗
(A.2a)

Pm(w,A∗) > 0 if w ∈ A1 or Pm′

(w,A∞) > 0 if w ∈ A1 (A.2b)

for some 1 ≤ m,m′ < ∞. So, for any w ∈ W and A such that A∗ ⊆ A and

A ∩A∞ = [ŵ,∞) for some ŵ > w1, there exists m < ∞ such that Pm(w,A) > 0.

Letting

ϕ(A) =

{

Γ (A ∩ Y) if A∗ ⊆ A and A∩A∞ = [ŵ,∞) for some ŵ ≥ w1

0 Otherwise

I have that the process {wt} is ϕ-irreducible and thus there exists a maximal

irreducibility measure ψ on B(W) (Meyn and Tweedie, 1993, theorem 4.0.1). Fur-

thermore, ψ(A∗ ∪ A∞) > 0, so that ψ has support with non-empty interior, and

since the process is Feller, it is a T-chain by proposition 7.1.2 and theorem 6.0.1(iii)

in Meyn and Tweedie (1993). Furthermore, theorem 6.0.1.(ii) ensures that every

compact set is petite, and since A∗ is compact and absorbent, theorem 8.3.6(i) en-

sures the process {wt} is recurrent. Thus, by theorem 10.4.4 I have the existence of

a unique invariant measure π̄, which, since A∗ is petite and absorbing, by theorem

10.4.10 is finite, and equivalent to a probability measure π, so that the process is

positive recurrent. Now, it is not hard to prove that the process is aperiodic, so

that theorem 13.3.4(ii) in Meyn and Tweedie (1993) gives the desired result.

(b) If 1w = w1, then also nw = wn. Let A∗ = [w1, wn], A0 = [0, w1) and A∞ = [wn,∞).

Then

P (w,A∗) = 1 if w ∈ A∗ ∪A0 and Pm(w,A∗) > 0 if w ∈ A∞

(A.3)

for some 1 ≤ m < ∞. So, for any w ∈ W and A such that A∗ ⊆ A, there exists
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m <∞ such that Pm(w,A) > 0. Letting

ϕ(A) =

{

Γ (A ∩ Y) if A∗ ⊆ A

0 Otherwise

I have that the process {wt} is ϕ-irreducible and thus there exists a maximal

irreducibility measure ψ on B(W) (Meyn and Tweedie, 1993, theorem 4.0.1). Fur-

thermore, since ψ(A∗) > 0, the result follows from the same arguments as in (a).

(ii) If wn = ∞, for any w ∈ W there exists m < ∞ such that ǫw = Pm(w,A∞) > 0,

where A∞ = [w1,∞). Define ǫ = supw∈[0,w1) ǫw. Clearly, P (w,A
∞) = 1 if w ∈ A∞ and

P (wt → ∞ | w0 ∈ A∞) = 1, then for any w ∈ [0, w1),

P (wt <∞, ∀ t) = 1−P (wt → ∞) = P (wt ∈ (A∞)C , ∀ t) = lim
t→∞

(1−ǫwt
)t ≤ lim

t→∞
(1−ǫ)t = 0

so that P (wt → ∞) = 1.

It is easy to see that if h(w) is concave, then the set N in the previous theorem is given

by N = ∅. This theorem can easily be extended for other types of increasing functions, but

this would require us to change the notation and analyze more subcases, so I do not pursue

it here.

Proof of theorem 3.1. For this proof I follow Carroll (2004) closely.

The problem is not bounded, so the methods in Stokey, Lucas, and Prescott (1989) are

not applicable in order to prove the existence and uniqueness of a measurable function v

that satisfies equation (3.3a). For this, I need the contraction mapping theorem of Boyd III

(1990).

Let φ : R+ → R++ be a continuous strictly positive function, define the φ-norm of a

function f as ‖f‖φ = sup |f(x)|
φ(x)

and define

Cφ(R+,R) =
{

f ∈ C(R+,R) | ‖f‖φ < K, some K > 0
}

where C(R+,R) is the set of continuous functions from R+ to R,to be the set of φ-bounded
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continuous functions. Boyd III (1990) proofs the following:

Theorem A.2 (Weighted Contraction Mapping). Let T : Cφ(R+,R) → C(R+,R) be a map

such that

(i.) T is non-decreasing, i.e. v ≤ v′ implies T (v) ≤ T (v′).

(ii.) T (0) ∈ Cφ(R+,R).

(iii.) T (v + aφ) ≤ T (v) + aξφ for some ξ < 1 and all a > 0.

Then T has a unique fixed point v∗.

A corollary of this theorem is that starting from any v0 ∈ Cφ(R+,R) I have that

limn→∞T
n(v0) = v∗.

Let

T (v(w)) = max
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) | c, w
]

be the T -map defined by (3.3a), let’s show that this T -map satisfies the conditions of theorem

A.2. For this, define

φ =











η + w + w1−θ if θ > 1

η + w + w−1 if θ = 1

η + w + w−θ + w1−θ if θ < 1

where

η =















β(ymax+y1−θ
min)

ξ−β
if θ > 1

β(ymax+y−1

min)

ξ−β
if θ = 1

β(ymax+y−θ
min+y1−θ

max)

ξ−β
if θ < 1

for some ξ ∈ (β, 1) such that βR ≤ ξ.

(i.) If v ≤ v′, then

T (v(w)) = max
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) | c, w
]

≤ max
s.t. 0≤c≤w

u(c) + βE
[

v′(h(c, w, y)) | c, w
]

= T (v′(w)).
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(ii.) T (0(w)) = maxs.t. 0≤c≤w u(c) + βE
[

0 | c, w
]

= u(w). Clearly, ‖T (0)‖φ < K for some

K > 0.

(iii.) Let a > 0, ymin = y1, ymax = yn, then if θ > 1

T (v + aφ)(w) = max
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) + aφ(h(c, w, y)) | c, w
]

= max
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) | c, w
]

+ βE
[

aφ(h(c, w, y)) | c, w
]

≤ T (v(w)) + max
s.t. 0≤c≤w

aβE
[

η +Rw −Rc+ y + (Rw − Rc+ y)1−θ | c, w
]

≤ T (v(w)) + max
s.t. 0≤c≤w

a
(

βη + βRw + βymax + βE
[

(Rw −Rc+ y)1−θ | c, w
])

≤ T (v(w)) + a
(

βη + βRw + βymax + βy1−θ
min + βRw1−θ

)

≤ T (v(w)) + aξφ.

If θ = 1

T (v + aφ)(w) = max
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) + aφ(h(c, w, y)) | c, w
]

= max
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) | c, w
]

+ βE
[

aφ(h(c, w, y)) | c, w
]

≤ T (v(w)) + max
s.t. 0≤c≤w

aβE
[

η +Rw −Rc+ y + (Rw − Rc+ y)−1 | c, w
]

≤ T (v(w)) + max
s.t. 0≤c≤w

a
(

βη + βRw + βymax + βE
[

(Rw −Rc+ y)−1 | c, w
])

≤ T (v(w)) + a
(

βη + βRw + βymax + βy−1
min + βRw−1

)

≤ T (v(w)) + aξφ.

If 0 < θ < 1

T (v + aφ)(w) = max
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) + aφ(h(c, w, y)) | c, w
]

= max
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) | c, w
]

+ βE
[

aφ(h(c, w, y)) | c, w
]

≤ T (v(w)) + max
s.t. 0≤c≤w

aβE
[

η +Rw − Rc+ y + (Rw − Rc+ y)−θ + (Rw − Rc+ y)1−θ | c, w
]

≤ T (v(w)) + max
s.t. 0≤c≤w

a
(

βη + βRw + βymax + βy−θ
min + βE

[

(Rw − Rc+ y)1−θ | c, w
])

≤ T (v(w)) + a
(

βη + βRw + βymax + βy−θ
min + y1−θ

max + βRw−θ + βRw1−θ
)
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≤ T (v(w)) + aξφ.

Thus, there exists a unique solution v∗ to the functional equation defined by (3.3a) which is

continuous. Since u(·) is differentiable, strictly increasing and strictly concave, I have that

T (v) is also strictly increasing and strictly concave and corollary 1 of Stokey, Lucas, and

Prescott (1989, p.52) implies that v∗ is also concave, and the theorem by Benveniste and

Scheinkman (1979) implies that it is differentiable and strictly increasing. By the theorem

of the maximum (see e.g. Stokey, Lucas, and Prescott, 1989, p.62) c∗(w) exists and is con-

tinuous. These last two results imply that the consumption function is strictly increasing.

Since for any v0 ∈ Cφ(R+,R) the sequence vn = T n(v0) converges to v∗, the fact that u(c)

belongs to Cφ(R+,R) and also to the HARA family of utility functions implies that c∗(w) is

concave by the results of Carroll and Kimball (1996).

Since both v∗ and u are concave and the constraint is convex, the unique solution c∗(w)

solves the related Kuhn-Tucker conditions (Arrow and Enthoven, 1961; Arrow, Hurwicz, and

Uzawa, 1961). This implies that there exists w̄ > 0 as defined in the theorem. To see this,

assume on the contrary that the agent is constrained for all wealth levels. This can happen

if and only if there does not exist a solution to the first order condition

u′(w̄)− βRE[u′(y)] = 0.

Let f(w) = u′(w)−βRE[u′(y)], then f(0) = +∞ and limw→∞ f(w) < 0. By the intermediate

value theorem there exists a solution, contradicting our starting hypothesis, so that I conclude

the existence of w̄.

Finally, since at w̄ the optimal consumption function satisfies

u′(w̄) = βRE[u′(y)] < βRu′(ymin) < u′(ymin),

I have that w̄ > ymin.

Proof of Theorem 3.2. (i) Clearly, U(α0, α1, w), EV
∗
α0,α1

and EV ∗
b are continuous, so the
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result follows by Weierstrass’ Theorem.

(ii) Our proof of this result uses the theory of measure valued differentiation

(Heidergott, Hordijk, and Weisshaupt, 2006; Heidergott and Vázquez-Abad, 2006,

2008). In order to prove this part, I need to show that under our assumptions, the

proof of Theorem 4.2 of Heidergott, Hordijk, and Weisshaupt (2006) holds, so that

πα0,α1
is Dφ-Lipschitz continuous and differentiable. For simplicity I will follow the no-

tation and definitions used by Heidergott, Hordijk, and Weisshaupt (2006). We present

the proof in steps.

Step 1: Let A∗ be as in (i)(a) in the proof of Theorem 2.2. This set is petite and the

first return time to A∗ for every w ∈ A∗, τA∗ is 1. So, theorem 14.0.1 of Meyn

and Tweedie (1993) implies that for any function f : W → [1,∞) I have that

∫

W

f(w)πα0,α1
(dw) <∞.

Clearly, for any continuous function g : W → R, |g|+1 satisfies the conditions

above, so that |g|+1 is πα0,α1
-integrable. By theorem 11.27 of Rudin (1966) g

is also πα0,α1
-integrable.

Step 2: For fixed α, let P (w,A;α) denote the one-step transition kernel. By (3.1b)

w′ ∈ W(α,w) ≡ [R(w − cb(α,w)) + y1, R(w − cb(α,w)) + yn) with probability

one, so that the density function of w′ is

γw′(w′;α,w) =

{

γy(w
′ − R(w − cb(α,w))) if w′ ∈ W(α,w)

0 Otherwise

and

P (w,A;α) =

∫

A

γw′(w′;α,w)dw′.

Under (a), this implies that for any continuous function g : W → R,

∫

W

|g(w′)| γw′(w′;α,w)dw′ =

∫

W(α,w)

|g(w′)| γw′(w′;α,w)dw′
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≤(yn − y1) · sup
w′∈W(α,w)

|g(w′)| γw′(w′;α,w) <∞

for all α and w ∈ W. Let D denote the set of continuous functions g : W → R

and Dφ be the set φ-bounded continuous functions, where φ is defined in the

proof of theorem 3.1. Clearly, Dφ ⊆ D .

Under (b), I have that for any φ-bounded continuous function g : W → R,

∫

W

|g(w′)| γw′(w′;α,w)dw′ ≤K

∫

W(α,w)

φ(w′)γw′(w′;α,w)dw′ <∞.

For this case, let D = Dφ be the set of φ-bounded continuous functions.

Then by assumption D, P (w,A;α) is D-Lipschitz continuous at α. To see

this, notice that for α′ 6= α with α′ chosen in such a way that either both

cb(α,w), cb(α′, w) < w or cb(α,w), cb(α′, w) ≥ w. We can do this, since both

D-Lipschitz continuity and D-differentiability need to hold on an open set

around α. Then

∣

∣

∣

∣

∫

W

g(w′)γw′(w′;α,w)dw′ −

∫

W

g(w′)γw′(w′;α′, w)dw′

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

W

g(w′)
(

γw′(w′;α,w)− γw′(w′;α′, w)
)

dw′

∣

∣

∣

∣

≤

∫

W

|g(w′)| |γw′(w′;α,w)− γw′(w′;α′, w)| dw′.

On W(α,w) ∩W(α′, w) I have that

|γw′(w′;α,w)− γw′(w′;α′, w)| ≤M1(w)
∣

∣R(w − cb(α,w))− R(w − cb(α′, w))
∣

∣

=RM1(w)
∣

∣cb(α,w)− cb(α′, w)
∣

∣

≤RM1(w)
(

|α0 − α′
0|+ w |α1 − α′

1|
)

.

On the other hand, let

ŵ = max
{

R(w − cb(α,w)) + yn, R(w − cb(α′, w)) + yn
}

,

ŵ = min
{

R(w − cb(α,w)) + yn, R(w − cb(α′, w)) + yn
}

,
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w̃ = max
{

R(w − cb(α,w)) + y1, R(w − cb(α′, w)) + y1
}

w̃ = min
{

R(w − cb(α,w)) + y1, R(w − cb(α′, w)) + y1
}

so that

∫

W\

(

W(α,w)∩W(α′,w)

) |g(w′)| |γw′(w′;α,w)− γw′(w′;α′, w)| dw′

=

∫ w̃

w̃

|g(w′)|max {γw′(w′;α,w), γw′(w′;α′, w)} dw′

+

∫ ŵ

ŵ

|g(w′)|max {γw′(w′;α,w), γw′(w′;α′, w)} dw′

≤
(

M2(w) +M3(w)
)(

|α0 − α′
0|+ w |α1 − α′

1|
)

.

So,

∫

W

|g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′ =

=

∫

W(α,w)∩W(α′,w)

|g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′

+

∫

W\

(

W(α,w)∩W(α′,w)

) |g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′

≤
(

Kg RM1(w) +M2(w) +M3(w)
)(

|α0 − α′
0|+ w |α1 − α′

1|
)

where Kg =
∫

W(α,w)∩W(α′,w)
|g(w′)| dw′.

Similarly, if α, α′ and w are such that either α0 + α1w ≤ w ≤ α′
0 + α′

1w or

α′
0 + α′

1w ≤ w ≤ α0 + α1w, then

∫

W

|g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′ =

=

∫

W(α,w)∩W(α′,w)

|g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′

+

∫

W\

(

W(α,w)∩W(α′,w)

) |g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′

≤
(

Kg RM1(w) +M2(w) +M3(w)
)(

|α0 − α′
0|+ w |α1 − α′

1|
)

.

This follows from a proof similar as before, one just need to notice that if
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α0 + α1w ≤ w ≤ α′
0 + α′

1w, then

0 ≤ w(1− α1)− α0 ≤ (α0 − α′
0) + w(α1 − α′

1),

so that

∣

∣cb(α,w)− cb(α′, w)
∣

∣ = |w(1− α1)− α0|

≤ |(α0 − α′
0) + w(α1 − α′

1)|

≤ |α0 − α′
0|+ w |α1 − α′

1| ,

and similarly for the case when α′
0 + α′

1w ≤ w ≤ α0 + α1w.

Step 3: Assumption F implies that

sup
α

‖Pα‖φ = sup
α

sup
w

∫

W

γw′(w′;α,w)
φ(w′)

φ(w)
dw′ <∞. (A.4)

This result follows directly from our assumption in a similar fashion as the

proof of Lemma 4.1 in Heidergott, Hordijk, and Weisshaupt (2006).

Step 4: Since φ(·) is continuousand the level sets Cφ = {w | φ(w) ≤ d} for some d ∈ R+

are compact, they are also petite. This implies that φ(·) is unbounded off petite

sets.

Notice that −Rα0 − (1 − R(1 − α1))w ∈ Dφ and I can find a λ ∈ (0, 1) such

that

sup
w

−Rα0 − (1− R(1− α1))w

φ(w)
< (λ− 1) < 0.

If w ≤ w̄, then
∫

Y

φ(y)γy(y)dy ≤ L1 ≤ L1 + λφ(w).

On the other hand, if w > w̄, then

∫

Y

φ
(

R(1− α1)w − Rα0 + y
)

γy(y)dy − φ(w) =

∫

Y

φ′(ξ)
(

R(1− α1)w − Rα0 + y − w
)

γy(y)dy <
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∫

Y

yγy(y)dy − Rα0 − (1−R(1− α1))w

so that

∫

Y

φ
(

R(1− α1)w −Rα0 + y
)

γy(y)dy ≤

L2 + λφ(w).

Let L = max {L1, L2}, then L, λ, φ(w) satisfy lemma 15.2.8 in Meyn and

Tweedie (1993), and by their theorem 16.0.1

‖P n
α − πα‖φ ≤ Kαρ

n
α (A.5)

for some Kα < ∞ and 0 < ρα < 1. But equations (A.4) and (A.5) are the

same as in lemma 4.1 and equation (20) in theorem 4.1 in Heidergott, Hordijk,

and Weisshaupt (2006), so the proof of their theorem 4.2 holds, and πα is

Dφ-Lipschitz continuous.

The existence of α∗ = (α∗
0, α

∗
1) follows now from Weierstrass’ theorem.

Additionally, notice that if g ∈ Dφ, then

d

dα0

∫

W

g(w′)γw′(w′;α,w)dw′ =























R
(

g(R((1− α1)w − α0) + y1)γy(R((1− α1)w − α0) + y1)−

g(R((1− α1)w − α0) + yn)γy(R((1− α1)w − α0) + yn)
)

+
∫

W
g(w′) d

dα0

γw′(w′;α,w)dw′ if w ≥ α0

1−α1

0 Otherwise

d

dα1

∫

W

g(w′)γw′(w′;α,w)dw′ =























Rw
(

g(R((1− α1)w − α0) + y1)γy(R((1− α1)w − α0) + y1)−

g(R((1− α1)w − α0) + yn)γy(R((1− α1)w − α0) + yn)
)

+
∫

W
g(w′) d

dα1

γw′(w′;α,w)dw′ if w ≥ α0

1−α1

0 Otherwise

are well defined and are the Dφ-derivatives of P (w,A;α).

(iii) Follows directly from the the proof of (ii) and the definition of problem (3.9).
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Proof of proposition 3.3. (i) By Taylor’s theorem

u(cb(wt))+βE0v(R(wt − cb(wt)) + yt) = u(c∗(wt)) + u′(c∗(wt))(c
b(wt)− c∗(wt))

+u′′(ξt)(c
b(wt)− c∗(wt))

2 + βE0[v(R(wt − c∗(wt)) + yt)]

−βRE0[v
′(R(wt − c∗(wt)) + yt)](c

b(wt)− c∗(wt))

+ βRE0[v
′′(ζt)](c

b(wt)− c∗(wt))
2

= v(wt)+
(

u′(c∗(wt))− βRE0[v
′(R(wt − c∗(wt)) + yt)]

)

(cb(wt)− c∗(wt))

+
(

u′′(ξt) + βRE0[v
′′(ζt)]

)

(cb(wt)− c∗(wt))
2

= v(wt)+µ(wt)(c
b(wt)− c∗(wt)) +

(

u′′(ξt) + βRE0[v
′′(ζt)]

)

(cb(wt)− c∗(wt))
2

where µ(wt) ≥ 0 is the Lagrange multiplier associated to the first order condition of

(3.3a), ξt ∈ (c∗(wt), c
b(wt)) and ζt ∈ (R(wt − c∗(wt)) + yt, R(wt − cb(wt)) + yt). Thus,

U(α0, α1, wt)− v(wt) =u(c
b(wt)) + βE0[U(α0, α1, R(wt − cb(wt)) + yt)]− v(wt)

=µ(wt)(c
b(wt)− c∗(wt)) +

(

u′′(ξt) + βRE0[v
′′(ζt)]

)

(cb(wt)− c∗(wt))
2

+ βE0[U(α0, α1, R(wt − cb(wt)) + yt)− v(R(wt − cb(wt)) + yt)].

Iterating I get

U(α0, α1, wt)− v(wt) = E0

[

T
∑

j=0

(

µ(wt+j)(c
b(wt+j)− c∗(wt+j))

)

]

+ E0

[

T
∑

j=0

((

u′′(ξt+j) + βRE0[v
′′(ζt+j)]

)

(cb(wt+j)− c∗(wt+j))
2
)

]

+ βTE0[U(α0, α1, R(wt+T − cb(wt+T )) + yt+T )− v(R(wt+T − cb(wt+T )) + yt+T )]

which under our hypothesis gets the desired result.

(ii) Notice that U(α0, α1, wt) − v(wt) is continuous in wt and in the stationary distribu-

tion wt ∈ [y1, nw]. So, U(α0, α1, wt) − v(wt) ≤ V̄ , for some 0 < V̄ < ∞, and thus,

limt→∞ βtE0

[

U(α0, α1, wt)− v(wt)
]

= 0 holds for wt ∈ W π∗-a.e. Replacing the previ-

ous equation in the definition of EV ∗
α0,α1

−EV ∗ gives the result.
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(iii) Similar as before, but I now make use of the fact that πα0,α1
is the stationary distribution

implied by the rule.

Proof of Corollary 3.4. Assume on the contrary that α∗
0+α∗

1w̄ < w̄, then, since µ(wt+j) = 0

for all wt+j ≥ w̄, I can find α ∈ Λ such that

cb(α,wt+j) = c∗(wt+j) ∀wt+j ≤ w̄

cb(α, w̃) = c∗(w̃) = cb(α∗, w̃) for a particluar w̃ > w̄

for which

(cb(α,wt+j)− c∗(wt+j))
2 < (cb(α∗, wt+j)− c∗(wt+j))

2 ∀wt+j

µ(wt+j)(c
b(α,wt+j)− c∗(wt+j)) = 0 ∀wt+j

so that

EV b
α0,α1

− EV ∗
b > EV b

α∗

0
,α∗

1

−EV ∗
b

which is a contradiction.

That α∗
0 + α∗

1w̄ ≥ w̄ implies that the first part of the integrand in (3.12) is always zero,

so that (α∗
0, α

∗
1) solves the problem in (3.13). The last equivalence follows from a change of

variable and the fact that wt follows the stationary distribution.

Proof of theorem 3.5. From the previous corollary, (α∗
0, α

∗
1) is such that cb(w) = c∗(w) for

w ≤ w̄ and the expected squared difference between cb(w) and c∗(w) is minimal under πα.

Since,

βREtu
′(cb(wt+1))− u′(cb(wt)) =βREt

(

u′(cb(wt+1))− u′(c∗(wt+1))
)

+
(

βREtu
′(c∗(wt+1))− u′(c∗(wt))

)

+
(

u′(c∗(wt))− u′(cb(wt))
)

=βREt

(

u′(cb(wt+1))− u′(c∗(wt+1))
)

+
(

u′(c∗(wt))− u′(cb(wt))
)

=k̃t(c
b(wt)− c∗(wt)),

then (α∗
0, α

∗
1) must also solve (3.15). If the solution is interior, then the first derivatives with
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respect to α0 and α1 must equal zero, which is condition (3.16), where ∂πα

∂α0

and ∂πα

∂α1

are the

measured-valued derivatives of πα defined in Heidergott, Hordijk, and Weisshaupt (2006).

Proof theorem 3.10. By assumption, it is the case that g0(α)
k0

= g1(α)
k1

, so the first order con-

dition can be rewritten as

f0(α
∗)

k0
+
g0(α

∗)

k0
=0,

f1(α
∗)

k1
+
g1(α

∗)

k1
=0.

This implies

f0(α
∗)

k0
=
f1(α

∗)

k1
,

which holds if, and only if, f0(α
∗) = f1(α

∗) = 0, i.e. if α∗ is a quasi-optimal linear consump-

tion function. In this case, additionally,

g0(α)

k0
=
g1(α)

k1
= 0.

Proof of proposition 4.1. Notice that the integrand in (ODE-DG) belongs to Dφ. So, by a

proof similar to that of theorem 3.2 the results of theorem 4.2 of Heidergott, Hordijk, and

Weisshaupt (2006) hold, implying that πα0,α1
is differentiable in both α0 and α1. Thus, I

can linearize the system around (αe
0, α

e
1,M

e), obtaining10

(

dα0

∂τ

dα1

∂τ

)

=∇h1(α
e,Me) ·

(

α0 − αe
0

α1 − αe
1

)

dM

dτ
=∇h2(α

e,Me) ·

(

α0 − αe
0

α1 − αe
1

)

− (M −Me),

where ∇h2(α
e,Me) is the derivative of the second equation in (ODE-DG) with respect to α0

and α1 evaluated at the equilibrium. Since ∇h1(α
e,Me) is Hermitian, all its characteristic

roots are real and, by the assumption of negative definiteness, strictly negative. So, (αe
0, α

e
1)

is locally asymptotically stable. But then, as (α0, α1) → (αe
0, α

e
1), the dynamics of M are

determined by the last part alone, which is negative definite, so that M → Me.

10Given that the derivative is evaluated at the equilibrium, there is not factor in (M e −M) in the first
equation.
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Proof of Theorem 4.3. This theorem is simply an application of (i) proposition 10, (ii) propo-

sition 11, (iii) theorem 13 and (iv) theorem 15 in chapter 1 of part II of Benveniste, Métivier,

and Priouret (1990). I only need to show that their assumptions A.1-A.7 hold for this prob-

lem.

A.1 This is given by assumption H.

A.2 Follows directly from the definition of Q and (3.1b).

A.3 In their notation, the function H(α,M,w) is given by the elements after κk in our

equation (DG), while their function ρ is equal to the zero function in our case. There

are four cases to consider:

(a) If w < α0 + α1w and w′ < α0 + α1w
′, then c(w′) = y.

(b) If w < α0 + α1w and w′ ≥ α0 + α1w
′, then c(w′) = α0 + α1y.

(c) If w ≥ α0 + α1w and w′ < α0 + α1w
′, then c(w′) = R(1− α1)w −Rα0 + y.

(d) If w ≥ α0+α1w and w′ ≥ α0+α1w
′, then c(w′) = α0+Rα1(1−α1)w−Rα0α1+α1y.

Let U1(w, α) =
(

βREtu
′(c(w′))− u′(α0 + α1w)

)

u′′(α0 + α1w), then

(a)

|U1(w, α)| =
∣

∣

(

βREtu
′(y)− u′(α0 + α1w)

)

u′′(α0 + α1w)
∣

∣

≤
(

|βREtu
′(y)|+ |u′(α0 + α1w)|

)

|u′′(α0 + α1w)|

<
(∣

∣βRu′(y)
∣

∣+
∣

∣u′(α0 + α1y)
∣

∣

) ∣

∣u′′(α0 + α1y)
∣

∣

=Ū1(α)

(b)

|U1(w, α)| =
∣

∣

(

βREtu
′(α0 + α1y)− u′(α0 + α1w)

)

u′′(α0 + α1w)
∣

∣

≤
(

|βREtu
′(α0 + α1y)|+ |u′(α0 + α1w)|

)

|u′′(α0 + α1w)|
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<
(∣

∣βRu′(α0 + α1y)
∣

∣+
∣

∣u′(α0 + α1y)
∣

∣

) ∣

∣u′′(α0 + α1y)
∣

∣

=Ū1(α)

(c)

|U1(w, α)| =
∣

∣

(

βREtu
′(R(1− α1)w − Rα0 + y)− u′(α0 + α1w)

)

u′′(α0 + α1w)
∣

∣

≤
(

|βREtu
′(R(1− α1)w − Rα0 + y)|+ |u′(α0 + α1w)|

)

|u′′(α0 + α1w)|

<
(∣

∣βRu′(R(1− α1)y − Rα0 + y)
∣

∣+
∣

∣u′(α0 + α1y)
∣

∣

) ∣

∣u′′(α0 + α1y)
∣

∣

=Ū1(α)

(d)

|U1(w, α)| =
∣

∣

(

βREtu
′(α0 +Rα1(1− α1)w −Rα0α1 + α1y)− u′(α0 + α1w)

)

u′′(α0 + α1w)
∣

∣

≤
(

|βREtu
′(α0 +Rα1(1− α1)w −Rα0α1 + α1y)|+ |u′(α0 + α1w)|

)

|u′′(α0 + α1w)|

<
(∣

∣βRu′(α0 +Rα1(1− α1)y − Rα0α1 + α1y)
∣

∣+
∣

∣u′(α0 + α1y)
∣

∣

) ∣

∣u′′(α0 + α1y)
∣

∣

=Ū1(α)

Thus, |U1(w, α| ≤ Ū1, where Ū1 = maxcases (a)−(d) sup(α,M)∈Q2
Ū1(α). So,

∥

∥

∥

∥

M−1 · U1(w, α) ·

(

1
w

)∥

∥

∥

∥

≤
∥

∥M−1
∥

∥ · |U1(w, α)| ·

∥

∥

∥

∥

(

1
w

)∥

∥

∥

∥

≤ K1Ū1(1 + w2),

where K1 = sup(α,M)∈Q2
‖M−1‖. Similarly, defining

U2(w, α) =
(

u′(α0 + α1w)− βREtu
′(c(w′))

)

u′′′(α0 + α1w) +
(

u′′(α0 + α1w)
)2

one can show that |U2(wα)| ≤ (Ū2 +K2)(1 +w2), where Ū2 = sup(α,M)∈Q2
Ū2(α), Ū2(α)

are bounds found in a similar fashion as Ū1(α), and K2 = sup(α,M)∈Q2
‖M‖. So,

∥

∥

∥

∥

U2(w, α) ·

(

1 w
w w2

)

−M

∥

∥

∥

∥

≤ ‖U2(w, α)‖ ·

∥

∥

∥

∥

(

1 w
w w2

)∥

∥

∥

∥

+ ‖M‖ ≤ (Ū2 +K2)(1 + w2).
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A.4 Their function h(α,M) is given by (ODE-DG). We have that

∥

∥

∥

∥

∫

M−1 · U1(w, α) ·

(

1
w

)

πα(dw)−

∫

M ′−1 · U1(w, α
′) ·

(

1
w

)

πα′(dw)

∥

∥

∥

∥

≤

∥

∥

∥

∥

∫

M−1 · U1(w, α) ·

(

1
w

)

πα(dw)−

∫

M ′−1 · U1(w, α) ·

(

1
w

)

πα(dw)

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

M ′−1 · U1(w, α) ·

(

1
w

)

πα(dw)−

∫

M ′−1 · U1(w, α
′) ·

(

1
w

)

πα(dw)

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

M ′−1 · U1(w, α
′) ·

(

1
w

)

πα(dw)−

∫

M ′−1 · U1(w, α
′) ·

(

1
w

)

πα′(dw)

∥

∥

∥

∥

≤Ū1

∫

(1 + w2)πα(dw) ·
∥

∥M−1 −M ′−1
∥

∥+K1

∫

|U1(w, α)− U1(w, α
′)| (1 + w2)πα(dw)

+K1

(

K3 |α0 − α′
0|+K4 |α1 − α′

1|
)

where K3 and K4 are given by the Lipschitz continuity of πα. We only need to show

now that U1(w, α) is Lipschitz continuous. Since

|u′′(α0 + α1w)− u′′(α′
0 + α′

1w)| =
∣

∣

∣
u′′′(ξ)

(

(α0 − α′
0) + (α1 − α′

1)w
)∣

∣

∣

≤ |u′′′(ξ)|
(

|α0 − α′
0|+ |α1 − α′

1|w
)

≤ sup
α0,α1

∣

∣u′′′(min
{

α0 + α1y, y
}

)
∣

∣

(

|α0 − α′
0|+ |α1 − α′

1|w
)

,

|u′(α0 + α1w)− u′(α′
0 + α′

1w)| =
∣

∣

∣
u′′(ξ′)

(

(α0 − α′
0) + (α1 − α′

1)w
)∣

∣

∣

≤ |u′′(ξ′)|
(

|α0 − α′
0|+ |α1 − α′

1|w
)

≤ sup
α0,α1

∣

∣u′′(min
{

α0 + α1y, y
}

)
∣

∣

(

|α0 − α′
0|+ |α1 − α′

1|w
)

,

∣

∣u′(ct+1)− u′(c′t+1)
∣

∣ =
∣

∣u′′(ξ′′)(ct+1 − c′t+1)
∣

∣

≤ |u′′(ξ′′)|
∣

∣ct+1 − c′t+1

∣

∣

≤ sup
α0,α1

∣

∣u′′(min
{

α0 + α1y, y
}

)
∣

∣

∣

∣ct+1 − c′t+1

∣

∣ .

There are 10 different cases of
∣

∣ct+1 − c′t+1

∣

∣ to analyze:

(a) If ct+1 = y = c′t+1, then
∣

∣ct+1 − c′t+1

∣

∣ = 0.

(b) If ct+1 = α0 + α1y and c′t+1 = y, then by assumption, α′
0 + α′

1y > y ≥ α0 + α1y, so
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that

∣

∣ct+1 − c′t+1

∣

∣ = |α0 + (α1 − 1)y| = |(1− α1)y − α0| < |(α′
0 − α0) + (α′

1 − α1)y|

≤ |α0 − α′
0|+ |α1 − α′

1| ȳ.

(c) If ct+1 = R(1−α1)w−α0R+ y and c′t+1 = y, then α′
0+α

′
1y > y ≥ α0+α1y, so that

∣

∣ct+1 − c′t+1

∣

∣ = |R(1− α1)w − α0R| = R |(1− α1)w − α0| < R |(α′
0 − α0) + (α′

1 − α1)w|

≤R
(

|α0 − α′
0|+ |α1 − α′

1|w
)

.

(d) If ct+1 = α0 +Rα1(1− α1)− Rα0α1 + α1y and c′t+1 = y, then

y < α0 + α1y, α′
0 + α′

1w > w ≥ α0 + α1w,

and R(1− α1)w − α0R + y ≥ α0 +Rα1(1− α1)− Rα0α1 + α1y, so that

∣

∣ct+1 − c′t+1

∣

∣ = |α0 +Rα1(1− α1)−Rα0α1 + α1y − y|

≤R |(1− α1)w − α0| ≤ R
(

|α0 − α′
0|+ |α1 − α′

1|w
)

.

(e) If ct+1 = α0 + α1y and c′t+1 = α′
0 + α′

1y, then

∣

∣ct+1 − c′t+1

∣

∣ = |α0 + α1y − α′
0 − α′

1y| ≤ |α0 − α′
0|+ |α1 − α′

1| ȳ.

(f) If ct+1 = R(1− α1)w − α0R + y and c′t+1 = α′
0 + α′

1y, then

y ≥ α′
0 + α′

1y, α′
0 + α′

1w > w ≥ α0 + α1w,

and α0 + Rα1(1− α1)− Rα0α1 + α1y ≥ R(1− α1)w − α0R + y, so that

∣

∣ct+1 − c′t+1

∣

∣ = |R(1− α1)w − α0R + y − α′
0 − α′

1y|

=R(1− α1)w − α0R + y − α′
0 − α′

1y

≤α0 + α1

(

R(1− α1)w − α0R + y
)

− α′
0 − α′

1y

=(α0 − α′
0) + (α1 − α′

1)y +Rα1

(

(1− α1)w − α0

)
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≤(α0 − α′
0) + (α1 − α′

1)ȳ +Rᾱ1

(

(α′
1 − α1)w − (α′

0 − α0)
)

≤(1 +Rᾱ1) |α0 − α′
0|+ (ȳ +Rᾱ1w) |α1 − α′

1| .

(g) If ct+1 = α0 +Rα1(1− α1)− Rα0α1 + α1y and c′t+1 = α′
0 + α′

1y, then

y ≥ α′
0 + α′

1y, α′
0 + α′

1w > w ≥ α0 + α1w,

and α0 + Rα1(1− α1)− Rα0α1 + α1y ≤ R(1− α1)w − α0R + y, so that

∣

∣ct+1 − c′t+1

∣

∣ = |α0 +Rα1(1− α1)− Rα0α1 + α1y − α′
0 − α′

1y|

=R(1− α1)w − α0R + y − α′
0 − α′

1y

≤ |α0 − α′
0|+ |α1 − α′

1| ȳ +Rα1 |(1− α1)w − α0|

≤ |α0 − α′
0|+ |α1 − α′

1| ȳ +Rᾱ1

(

|α0 − α′
0|+ |α1 − α′

1|w
)

=(1 +Rᾱ1) |α0 − α′
0|+ (ȳ +Rᾱ1w) |α1 − α′

1| .

(h) If ct+1 = R(1− α1)w − α0R + y and c′t+1 = R(1− α′
1)w − α′

0R + y, then

∣

∣ct+1 − c′t+1

∣

∣ ≤ R
(

|α0 − α′
0|+ |α1 − α′

1|w
)

.

(i) If ct+1 = R(1− α1)w − α0R+ y and c′t+1 = α′
0 +Rα′

1(1− α′
1)−Rα′

0α
′
1 + α′

1y, then

w ≥ α0 + α1w R(1− α1)w − α0R + y < α0 +Rα1(1− α1)−Rα0α1 + α1y

w ≥ α′
0 + α′

1w R(1− α′
1)w − α′

0R + y ≥ α′
0 +Rα′

1(1− α′
1)− Rα′

0α
′
1 + α′

1y

so that, if ct+1 − c′t+1 ≥ 0, then

∣

∣ct+1 − c′t+1

∣

∣ =R(1− α1)w − α0R + y − α′
0 − Rα′

1(1− α′
1) +Rα′

0α
′
1 − α′

1y

≤α0 +Rα1(1− α1)−Rα0α1 + α1y − α′
0 −Rα′

1(1− α′
1) +Rα′

0α
′
1 − α′

1y

=(α0 − α′
0) + (α1 − α′

1)y + (α1 − α′
1)R
(

(1− α1)w − α0

)

+ α′
1R
(

(α′
0 − α0) + (α′

1 − α1)w
)

≤ |α0 − α′
0|+ |α1 − α′

1| ȳ + |α1 − α′
1|Rw +Rᾱ1

(

|α′
0 − α0|+ |α′

1 − α1|w
)
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=(1 +Rᾱ1) |α0 − α′
0|+ (ȳ +R(1 + ᾱ1)w) |α1 − α′

1| .

On the other hand, if ct+1 − c′t+1 ≤ 0, then

∣

∣c′t+1 − ct+1

∣

∣ =α′
0 +Rα′

1(1− α′
1)−Rα′

0α
′
1 + α′

1y − R(1− α1)w + α0R− y

≤R(1− α′
1)w − α′

0R + y −R(1− α1)w + α0R − y

≤R
(

|α0 − α′
0|+ |α1 − α′

1|w
)

.

(j) If ct+1 = α0+Rα1(1−α1)−Rα0α1+α1y and c
′
t+1 = α′

0+Rα
′
1(1−α

′
1)−Rα

′
0α

′
1+α

′
1y,

then

∣

∣ct+1 − c′t+1

∣

∣ = |α0 +Rα1(1− α1)− Rα0α1 + α1y − α′
0 −Rα′

1(1− α′
1) +Rα′

0α
′
1 − α′

1y|

≤(1 +Rᾱ1) |α0 − α′
0|+ (ȳ +R(1 + ᾱ1)w) |α1 − α′

1| .

So, since R ≥ 1, ȳ > 0 and ᾱ1 > 0, I have that in general

∣

∣ct+1 − c′t+1

∣

∣ ≤ (1 +Rᾱ1) |α0 − α′
0|+ (ȳ +R(1 + ᾱ1)w) |α1 − α′

1| .

This implies that

|U1(wα)− U1(w, α
′)| =

∣

∣

∣

(

βREtu
′(ct+1)− u′(α0 + α1w)

)

u′′(α0 + α1w)

−
(

βREtu
′(c′t+1)− u′(α′

0 + α′
1w)
)

u′′(α′
0 + α′

1w)
∣

∣

∣

=
∣

∣

∣

(

βREtu
′(ct+1)− u′(α0 + α1w)

)(

u′′(α0 + α1w)− u′′(α′
0 + α′

1w)
)

+u′′(α′
0 + α′

1w)
(

βREtu
′(ct+1)− u′(α0 + α1w)− βREtu

′(c′t+1) + u′(α′
0 + α′

1w)
)∣

∣

∣

≤ |βREtu
′(ct+1)− u′(α0 + α1w)| |u

′′(α0 + α1w)− u′′(α′
0 + α′

1w)|

+ |u′′(α′
0 + α′

1w)|
(

βREt

∣

∣u′(ct+1)− u′(c′t+1)
∣

∣ + |u′(α0 + α1w)− u′(α′
0 + α′

1w)|
)

≤(1 + βR) sup
α0,α1

∣

∣u′(min
{

αo + α1y, y
}

)
∣

∣ sup
α0,α1

∣

∣u′′′(min
{

α0 + α1y, y
}

)
∣

∣

·
(

|α0 − α′
0|+ |α1 − α′

1|w
)

+ sup
α0,α1

∣

∣u′′(min
{

αo + α1y, y
}

)
∣

∣

2

·
(

βR
[

(1 +Rᾱ1) |α0 − α′
0|+ (ȳ +R(1 + ᾱ1)w) |α1 − α′

1|
]
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+
[

|α0 − α′
0|+ |α1 − α′

1|w
])

=K5 |α0 − α′
0|+K6 |α1 − α′

1|+K7 |α1 − α′
1|w

where

K5 =(1 + βR) sup
α0,α1

∣

∣u′(min
{

αo + α1y, y
}

)
∣

∣ sup
α0,α1

∣

∣u′′′(min
{

α0 + α1y, y
}

)
∣

∣

+ sup
α0,α1

∣

∣u′′(min
{

αo + α1y, y
}

)
∣

∣

2
(

βR(1 +Rᾱ1) + 1
)

,

K6 = sup
α0,α1

∣

∣u′′(min
{

αo + α1y, y
}

)
∣

∣

2
ȳ,

K7 =(1 + βR) sup
α0,α1

∣

∣u′(min
{

αo + α1y, y
}

)
∣

∣ sup
α0,α1

∣

∣u′′′(min
{

α0 + α1y, y
}

)
∣

∣

+ sup
α0,α1

∣

∣u′′(min
{

αo + α1y, y
}

)
∣

∣

2
(

R(1 + ᾱ1) + 1
)

.

Thus, I have the Lipschitz continuity of (ODE-DG), i.e. h(α,M).

Now, define v(α,M,w) =
∑

n(P
n
α −πα)H(α,M,w). Let’s see that it is well defined. For

that, since ‖P n
α − πα‖φ ≤ Kαρ

n
α, as was established in the proof of theorem 3.2, I have

that |(P n
α − πα)H(α,M,w)| ≤ Kα ‖H‖φ ρ

n
αφ(w). Thus,

∑

n

|(P n
α − πα)H(α,M,w)| ≤

cα ‖H‖φ
1− ρα

φ(w) <∞.

Furthermore, I have that (I − πα)v(α,M,w) = H(α,M,w)− h(α,M),

|v(α,M,w)| ≤
Kα ‖H‖φ
1− ρα

φ(w) ≤ K8(1 + w)

and Pαv(α,M,w) is Lipschitz continuous.

A.5 If w ≤ wn, then wt ≤ wn for all t ≥ 0, while if w > wn, then wt ≤ w, so that

Ew,α,M(I((α,M) ∈ Q2, k ≤ t) |wt+1|
q) ≤K8(1 + wq),

where K8 ≥ max {1, wn}.

A.6 This holds by assumption H.
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A.7 Corollary 4.2 ensures this.

Proof of theorem 4.5. It suffices to note that if α = αq, then f0(α
q) = f1(α

1) = 0 in the

first order condition (3.16). This implies that (ODE-DG) is equal to zero, i.e. that αq

is an equilibrium of (ODE-DG). Similarly, if αe is an equilibrium of (ODE-DG), then

f0(α
q) = f1(α

1) = 0 , i.e. it is a quasi-optimal linear consumption function. Clearly,

under the conditions of theorem 3.10, α∗ is quasi-optimal. Finally, notice that in this case

the objective function in (3.15) is a strict Lyapunov function for (ODE-DG), thus, α∗ is

asymptotically stable (Hirsch, Smale, and Devaney, 2004, p. 194-195).
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