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Abstract

This paper examines how and to what extent parameter estimates can be biased in a

dynamic stochastic general equilibrium (DSGE) model that omits the zero lower bound

constraint on the nominal interest rate. Our experiments show that most of the parame-

ter estimates in a standard sticky-price DSGE model are not biased although some biases

are detected in the estimates of the monetary policy parameters and the steady-state real

interest rate. Nevertheless, in our baseline experiment, these biases are so small that the

estimated impulse response functions are quite similar to the true impulse response func-

tions. However, as the probability of hitting the zero lower bound increases, the biases

in the parameter estimates become larger and can therefore lead to substantial differences

between the estimated and true impulse responses.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become a prominent tool for

policy analysis. In particular, following the development of Bayesian estimation and evalu-

ation techniques, estimated DSGE models have been extensively used by a range of policy

institutions, including central banks. At the same time, the zero lower bound constraint on

the nominal interest rates has been a primary concern for policymakers. Much work has been

devoted to understand how the economy works and how policy should be conducted in the

presence of this constraint from a theoretical perspective.1 However, empirical studies that

estimate DSGE models including the interest-rate lower bound are still scarce because of com-

putational difficulties in the treatment of nonlinearity arising from the bound,2 and hence most

practitioners continue to estimate linearized DSGE models without explicitly considering the

lower bound.

This paper examines how and to what extent the estimates of structural parameters can

be biased in an estimated DSGE model where the existence of the interest-rate lower bound is

omitted in the estimation process. Suppose that there is a zero lower bound constraint in the

economy and that an econometrician fits a model without taking into account this constraint.

We would then expect the parameter estimates in the model to be biased. If significant biases

were detected, it would cast some doubt on the common practice in which the zero lower bound

constraint is not explicitly taken into account and would motivate researchers toward the use

of an estimation procedure that deals with the constraint. Conversely, if the biases involved are

negligible, it would at least assure practitioners that their common practice leads to reliable

estimates in its own way.

More specifically, we construct artificial time series simulated from a standard sticky-price

DSGE model that incorporates an occasionally binding constraint on the nominal interest rate.

1See, for instance, Eggertsson and Woodford (2003), Jung, Teranishi, and Watanabe (2005), Adam and

Billi (2006, 2007), Christiano, Eichenbaum, and Rebelo (2011), Aruoba and Schorfheide (2013), Bodenstein,

Guerrieri, and Gust (2013), Braun, Körber, and Waki (2012), Erceg and Lindé (2012), Fernández-Villaverde,

Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2012), and Gavin, Keen, Richter, and Throckmorton (2013).

2A remarkable exception is Gust, López-Salido, and Smith (2012) who estimate a nonlinear DSGE model in

which the interest-rate lower bound is occasionally binding. Based on the estimated model, they quantify the

effect of the zero lower bound constraint on the recent economic slump in the US.
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The parameters calibrated in this data generating process (DGP) are regarded as true values.

The solution algorithm follows from Erceg and Lindé (2012) and Bodenstein, Guerrieri, and

Gust (2013).3 In their algorithm, if the model-implied nominal interest rate falls below zero, a

sequence of contractionary monetary policy shocks is added in both the current and anticipated

periods so that the contemporaneous and expected interest rates at the lower bound are zero.

Then, using the simulated data, the model is estimated without including the interest-rate

lower bound. In the estimation, we employ Bayesian methods, which are now extensively used

to estimate DSGE models. We set the prior means to the true parameter values and assess

the parameter biases from neglecting the lower bound by comparing the posterior means and

Bayesian credible intervals with the true values.

One could argue that the DGP in our analysis should be replaced with a fully nonlin-

ear model as in Braun, Körber, and Waki (2012), Fernández-Villaverde, Gordon, Guerrón-

Quintana, and Rubio-Ramı́rez (2012) or Gust, López-Salido, and Smith (2012). However, if

the DGP is characterized by a fully nonlinear model, we cannot identify the source of parameter

bias: whether the exclusion of the interest-rate lower bound or the linearization of the model.

In this regard, the solution method employed in this paper is compatible with the standard

solution algorithms for linear rational expectations models, such as Blanchard and Kahn (1980)

and Sims (2002). Therefore, our analysis points to parameter bias only resulting from omitting

the zero lower bound constraint.

Our main results are summarized as follows. In the baseline economy, where the true value

for the steady-state real interest rate is calibrated such that the probability of hitting the zero

lower bound is about five percent, we find that most of the parameter estimates are not biased,

although some biases are detected in the estimates of the monetary policy parameters and the

steady-state real interest rate. We demonstrate that these biases in parameter estimates do

not amount to substantial biases in the estimates of the impulse response functions.4 However,

if the true parameter values in the DGP are altered such that the probability of binding at

the constraint increases, we show that the biases in the parameter estimates become larger

3These studies apply the method in Laséen and Svensson (2011), who propose a convenient algorithm to

construct policy projections conditional on alternative anticipated policy rate paths in linearized DSGE models.

4Our robustness analysis shows that these results hold even if we use a larger-scale DSGE model à la Smets

and Wouters (2003, 2007).
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and that the estimated impulse response functions can then substantially differ from the true

functions. This finding suggests that researchers in a very low interest rate environment should

make use of an estimation procedure that explicitly takes into account the zero lower bound.

The remainder of the paper proceeds as follows. Section 2 describes the stylized DSGE

model used for our analysis and the solution algorithm that incorporates the occasionally

binding constraint on the nominal interest rate into the linear rational expectations system.

Section 3 explains the experimental design used for the analysis and presents our results.

Section 4 conducts a robustness analysis with a larger-scale DSGE model. Section 5 is the

conclusion.

2 The Model and Solution Method

This section describes the DGP used in our analysis. The DGP consists of a small-scale DSGE

model with sticky prices and a monetary policy rule. In order to incorporate the zero lower

bound constraint on the nominal interest rate, the model is solved using the method employed

in Erceg and Lindé (2012) and Bodenstein, Guerrieri, and Gust (2013).

2.1 The Model

In the model economy, there are households, perfectly competitive final-good firms, monopolis-

tically competitive intermediate-good firms that face price stickiness, and a monetary authority.

For empirical validity, the model features habit persistence in consumption preferences, price

indexation to recent past and steady-state inflation, and monetary policy smoothing. A similar

model is used in Dennis (2004, 2009) and Milani and Treadwell (2012), among others.

The log-linearized equilibrium conditions are summarized as follows:5

Ỹt =
1

1 + γ
EtỸt+1 +

γ

1 + γ
Ỹt−1 −

1− γ

σ (1 + γ)
(r̃nt −Etπ̃t+1) + zdt , (1)

π̃t =
β

1 + βι
Etπ̃t+1 +

ι

1 + βι
π̃t−1

+
(1− ξ) (1− ξβ)

ξ (1 + βι)

[(
χ+

σ

1− γ

)
Ỹt −

σγ

1− γ
Ỹt−1

]
+ zpt , (2)

r̃nt = max[ϕr r̃
n
t−1 + (1− ϕr)

(
ϕππ̃t + ϕyỸt

)
+ zrt , − (r̄ + π̄)] (3)

5See the Appendix for the full description of the model.
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Eq. (1) is the spending Euler equation, where Ỹt, r̃
n
t and π̃t are output, the nominal interest

rate, and inflation in terms of the percentage deviations from their steady-state values, zdt is

a shock to households’ preferences, interpreted as a demand shock, γ ∈ [0, 1] is the degree of

habit persistence, and σ > 0 is the inverse of the intertemporal elasticity of substitution.

Eq. (2) is the New Keynesian Phillips curve, where β ∈ (0, 1) is the subjective discount

factor determined by the steady-state relationship β = π/r, where π and r are the steady-state

gross inflation and real interest rate respectively, ι ∈ [0, 1] is the weight of price indexation

to recent past inflation πt−1 relative to steady-state inflation π, ξ ∈ (0, 1) is the so called

Calvo parameter, which measures the degree of price stickiness, and χ > 0 is the inverse of the

elasticity of labor supply. zpt is a cost-push shock.

Eq. (3) is a Taylor (1993) type monetary policy rule with the zero lower bound on the

nominal interest rate, where ϕr ∈ [0, 1) is the degree of interest rate smoothing, ϕπ > 1 and

ϕy > 0 represent the degrees of interest rate policy responses to inflation and output gap

respectively, zrt is a monetary policy shock, and π̄ = 100(π − 1) and r̄ = 100(r − 1) are the

steady-state values for the real interest rate and inflation, respectively. As r̃nt is expressed as

the deviation from the steady-state nominal interest rate r̄ + π̄, the max function constrains

the level of the nominal interest rate to be greater than or equal to zero.

Each shock zxt , x ∈ {d, p, r} is governed by a stationary first-order autoregressive process:

zxt = ρxz
x
t−1 + εxt , (4)

where ρx ∈ [0, 1) is an autoregressive coefficient and εxt is a normally distributed innovation

with mean zero and standard deviation σxn.

In the DGP, the percentage deviation of output from the steady state 100 log(Yt/Y ), the

inflation rate 100 log πt, and the nominal interest rate 100 log rnt are assumed to be observable.

Then, these observables are related to the model-implied variables by the following observation

equations: 
100 log(Yt/Y )

100 log πt

100 log rnt

 =


0

π̄

r̄ + π̄

+


Ỹt

π̃t

r̃nt

 . (5)
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2.2 Parameter Setting

The model is parameterized according to standard choices in the literature in order to make

our test economy as representative as possible. Table 1 summarizes our baseline parameter

setting.

The inverse of intertemporal elasticity of substitution σ is set to be unity, so that the

households’ preferences are characterized by the log-utility function. We assign the inverse of

the elasticity of labor supply χ = 1. The habit persistence and price indexation parameters, γ

and ι, are both set at 0.5. As is often the case in the New Keynesian literature, we set the Calvo

parameter ξ = 0.75, which implies that the average duration of prices is four quarters. The

monetary policy parameters (ϕπ = 1.5, ϕy = 0.125) that represent the degrees of interest rate

responses to inflation and output gap follow from the coefficients in the original Taylor (1993)

rule, adapted to a quarterly frequency. The policy-smoothing parameter ϕr is set to be 0.5. The

steady-state inflation rate π̄ is set at 0.5, implying that the central bank’s target inflation rate

is two percent annually. The steady-state value of the real interest rate (r̄ = 0.5) is almost the

same as the average of the ex-post real interest rate calculated from the three-month Treasury

bill rate and changes in the GDP implicit deflator in the post-1980s US sample.

For each shock, moderate persistency is assumed: ρd = 0.5, ρp = 0.5, ρr = 0.5. The

standard deviation of each shock (σd = 0.25, σp = 0.25, σr = 0.25) is calibrated in line with

the prior mean often used in the literature that estimate similar DSGE models using Bayesian

methods.

2.3 Solution Method

The solution algorithm follows from Erceg and Lindé (2012) and Bodenstein, Guerrieri, and

Gust (2012). They apply the method in Laséen and Svensson (2011), who propose a convenient

algorithm to construct policy projections conditional on alternative anticipated policy rate

paths in linearized DSGE models. This solution method is compatible with the standard

solution algorithms for linear rational expectations models, such as Blanchard and Kahn (1980)

and Sims (2002), and hence yields a straightforward interpretation about the implications of

the zero bound constraint.
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To be specific, Eq. (3) that includes the max operator is replaced with:

r̃nt = ϕrr̃
n
t−1 + (1− ϕr)

(
ϕππ̃t + ϕyỸt

)
+ zrt +mt,

where mt is the contractionary monetary policy shock that enforces the zero lower bound

constraint. If the unconstrained nominal interest rate r̄+π̄+ϕrr̃
n
t−1+(1− ϕr)

(
ϕππ̃t + ϕyỸt

)
+zrt

(in terms of percentage level) falls below zero, a positive mt is endogenously determined so that

r̄ + π̄ + ϕr r̃
n
t−1 + (1− ϕr)

(
ϕππ̃t + ϕyỸt

)
+ zrt +mt = 0. We call this mt a binding shock.

mt should be treated not only as an unanticipated shock but also as an anticipated shock

given agents facing large negative shocks in the economy expect that the nominal interest rate

should be at the zero lower bound for some periods in the future. To take such expectation

channel into account, mt is extended as follows:

mt = m1
t−1 + ν0t

m1
t = m2

t−1 + ν1t

m2
t = m3

t−1 + ν2t

...

mK−1
t = mK

t−1 + νK−1
t

mK
t = νKt ,

where K is the maximum number of future periods in which the unconstrained monetary policy

rule implies the negative nominal interest rate. Based on this specification of the binding

shock, each νkt , k = 0, 1, . . . ,K has an effect on Etr̃
n
t+k since Etmt+k = νkt . Therefore, if

r̄+ π̄+Etr̃
n
t+k < 0 without the binding shocks, r̄+ π̄+Etr̃

n
t+k = 0 can be enforced by adjusting

νkt . As these binding shocks are chosen depending on the state of the economy, the expected

duration of zero lower bound periods is endogenously determined. In practice, νkt affects Etr̃
n
t+k′

for k′ ̸= k because of the dynamic structure of the model, but we can exactly find a set of νkt

for k = 0, 1, . . . ,K that ensures the zero lower bound since there are as many binding shocks

as there are periods for the zero nominal interest rate.

3 Econometric Experiments

In this section, we conduct econometric experiments to examine how the parameter estimates

can be biased if the existence of the interest-rate lower bound is excluded in the estimation
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process. Moreover, we investigate the effects of these parameter biases on the model properties

by comparing the estimated impulse responses with those based on the true parameter values.

3.1 Design

Our experiments proceed as follows. First, we generate an artificial time series of output

(deviation from the steady state), inflation, and the nominal interest rate from the DGP as

described in the preceding section. Thus, the simulated series can be regarded as those that

reflect the existence of the zero lower bound constraint. The simulated sample size is 200

observations, which corresponds to quarterly observations over a period of 50 years. This

sample size is chosen because it is comparable to that with which many researchers estimate

DSGE models in practice. According to a simulated sample using the baseline parameter

setting presented in Table 1, our model economy is at the zero lower bound for 5.5 percent

of quarters (11 periods of 200). This probability of hitting the interest-rate lower bound is

almost identical to that simulated in Fernández-Villaverde, Gordon, Guerrón-Quintana, and

Rubio-Ramı́rez (2012).

Next, using the simulated data, we estimate the DSGE model that consists of Eq. (1)–(4)

together with the observation equations (5) without imposing the zero lower bound on the

nominal interest rate. In the estimation, we employ Bayesian methods. The prior distributions

of the model parameters are given in Table 2. As each prior mean is set to the corresponding

true parameter value used in generating the data, we can evaluate the parameter bias from

missing the lower bound constraint by examining how the resulting posterior mean and Bayesian

credible interval differ from the true value. To obtain the posterior distributions, we generate

500,000 draws using the random-walk Metropolis–Hastings algorithm and discard the first half

of these draws.6

3.2 Results for Baseline Experiment

The second to fourth columns in Table 3 compare the true parameter values with the poste-

rior means and the 90 percent credible intervals for the estimated parameters in the baseline

6The scale factor for the jumping distribution in the Metropolis–Hastings algorithm is adjusted so that the

acceptance rate of candidate draws is approximately 25 percent. We use the Brooks and Gelman (1998) measure

to confirm the convergence of the posterior distributions.
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experiment. We can see that most of the estimated parameters are not biased as the posterior

mean estimates are very close to the true parameter values and the 90 percent credible intervals

contain the true values. This may be good news for many researchers in that the structural

parameters relating to preferences and nominal rigidities, the so-called deep parameters, are

not much affected by ignoring the interest-rate lower bound. However, we do detect some biases

in the estimates of parameters that characterize the monetary policy rule, ϕπ and ϕr, and the

steady-state real interest rate r̄ in the sense that the credible intervals for these parameters do

not include the true values.

An intuitive explanation for these biased estimates is the following. In the DGP, the

monetary policy reaction function has a kink where the interest-rate lower bound becomes

binding, that is, the reaction function has positive slopes with respect to inflation, output, and

the lagged nominal interest rate if the unconstrained nominal interest rate is positive, but the

slopes become flat if it is negative. However, when such a kink is omitted in the estimation

process, as is the case in our experiment, the estimated slopes are approximated to lie between

the positive and flat slopes in the DGP, and thus the parameters in the monetary policy rule

can be underestimated. In our experiment, the biases emerge as a change in the estimate of

ϕπ and ϕr, although the estimate of ϕy could also be potentially affected. The reason for the

upward bias in the estimate of r̄ is also straightforward. The presence of the interest-rate lower

bound forces the nominal interest rate to be equal or greater than zero. However, if the model

estimation fails to consider the zero lower bound, the nominal interest rate can be negative,

and the mean of the model-implied nominal interest rate declines. Then, the estimate of the

steady-state nominal interest rate must rise to adjust the difference between the mean of the

model-implied nominal interest rate and that of the corresponding series simulated from the

DGP with the lower bound, given the model is log-linearized around the steady state. In this

experiment, such an adjustment has mostly emerged as a change in the estimate of r̄,7 rather

than π̄. These causes of the parameter biases could have some influence on the estimates of

the other structural parameters that characterize the Euler equation and the Phillips curve as

we apply the system-based estimation approach. However, our experiment has revealed that

such influence is quite limited.

7A change in r̄ affects the subjective discount factor β through the steady-state relationship β = π/r and the

definition r = r̄/100 + 1, but the resulting change in β is quite marginal in its magnitude.
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Our baseline experiment is based on the posterior estimates for a sample of 200 observations.

We cannot deny the possibility that the parameter biases described above may arise because

of the small sample, and that sampling variability could lead to different biases, regardless of

the exclusion of the interest-rate lower bound. To mitigate the effect of small sample bias,

we conduct an experiment using a large sample of 5,000 observations generated from the same

DGP. The estimation results are presented in the last two columns in Table 3. As in the baseline

experiment, significant biases are found in the estimates of the monetary policy parameters, ϕπ

and ϕr, and the steady-state real interest rate r̄, and the credible intervals for these parameters

do not contain the true values. The other structural parameters are not much biased in that

the posterior mean estimates are quite similar to the true parameter values.8 Therefore, the

baseline results are not altered in this experiment.

An important issue is whether the parameter biases detected in the present experiment

can lead to a sizeable difference in the implications of the model. To investigate this issue, we

compare the impulse response functions estimated without considering the interest-rate lower

bound with those computed using the true parameter values. Figure 1 depicts the impulse

responses of output, inflation, and the nominal interest rate to one standard deviation shocks

in demand, cost-push, and monetary policy. The responses are expressed in terms of the

percentage deviation from the steady state in order to focus on the changes in the transmission

of shocks.9 In each panel, the solid thick line represents the true response, and the solid thin

line and dashed lines are respectively the posterior mean and 90 percent credible interval for

the estimated response. Throughout the figure, although small differences are found between

the mean estimates and the true response, all the credible intervals include the true responses.

Therefore, we can conclude that the parameter biases in the baseline experiment do not amount

to substantial biases in the impulse response functions.

8The credible intervals for some of the parameters do not include their true values, but the mean estimates

themselves are not much different from the true values. Thus, we do not assess that these parameter estimates

are significantly biased in this experiment.

9The estimated responses of the nominal interest rates in level terms are obviously different from the true

responses as the estimate of the steady-state real interest rate is biased.
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3.3 Results for Alternative Experiments

According to the simulated time series in our baseline experiment, the nominal interest rate

is bounded at zero for 5.5 percent of quarters. As the probability of hitting the zero lower

bound increases in the DGP, it could be possible that parameter biases from excluding the

bound in the estimation become large. To analyze such a possibility, we change the parameters

assigned to the DGP so that the model economy is more frequently constrained by the interest-

rate lower bound. We then conduct the same estimation exercises as the baseline experiment

using the data simulated by the DGP with the alternative parameter settings. Specifically,

we consider two cases. One is where the true steady-state real interest rate falls by 0.25 (one

percent annually) so that r̄ = 0.25. The other is where the standard deviation of the demand

shock increases to twice its size so that σd = 0.5. The latter case increases the number of zero

interest rate periods because large negative shocks are more likely to depress the economy and

to lower the nominal interest rate. In both cases, the probability of hitting the lower bound

doubles, that is, they are now 11 percent of the simulated sample.

The middle two columns in Table 4 present the posterior means and the 90 percent credible

intervals for the parameters in the experiment where the true parameter value for the real

interest rate decreases to r̄ = 0.25. As is the case with the baseline experiment, the estimates

of the monetary policy parameter ϕπ and the steady-state real interest rate r̄ exhibit substantial

biases. In contrast, the posterior mean estimate of the policy smoothing parameter ϕr is almost

the same as the true value. Instead, significant biases are found in the autoregressive coefficient

ρr and the standard deviation σr of the monetary policy shock. However, the other estimates

are not very biased in the sense that the posterior credible intervals include their corresponding

true values. Figure 2 graphs the estimated and true impulse responses in order to examine the

effects of these parameter biases on the model properties. Compared with the responses in the

baseline experiment, the differences between the mean estimates and the true responses become

large in most of the panels. In particular, the credible intervals for the output responses to the

cost-push and monetary policy shocks and the inflation response to the monetary policy shock

do not contain the true responses in the first five periods.

The last two columns in Table 4 provide the posterior means and 90 percent credible

intervals for the parameters in the experiment where the true standard deviation of the demand

shock increases to σd = 0.5. The estimates of the monetary policy parameters, ϕπ and ϕr, and

11



the steady-state real interest rate r̄ exhibit larger biases than those in the baseline experiment.

In addition, significant biases are found in ϕy, ρr and σr, which are all related to monetary

policy, and the credible intervals for these parameters do not include the true values. As in

the previous experiment, the estimates of the other parameter estimates are not very biased.

According to the impulse responses presented in Figure 3, the true responses are outside the

credible intervals in the first few periods regarding the response of the nominal interest rate to

the demand shock and the responses of output and inflation to the cost-push shock.

On the basis of the two experiments above, the parameters estimated without considering

the zero lower bound constraint may not be sufficiently accurate to replicate the true economic

dynamics.

4 Robustness Analysis

While we have employed a small-scale DSGE model in our analysis, an increased number of

policy institutions are actively developing and estimating larger-scale DSGE models à la Smets

and Wouters (2003, 2007). Thus, as a robustness analysis, we conduct a similar exercise as in

the preceding section using a version of the Smets and Wouters (2007) model.

4.1 Smets–Wouters Type Model

The model employed in this section is a slightly simplified version of the Smets and Wouters

(2007) model. This version differs from their original model in the following three aspects. First,

for the purpose of comparison with our baseline experiment, the monetary policy rule is replaced

with the one specified in our baseline model whereas Smets and Wouters employ a generalized

Taylor rule in which the policy rate is adjusted in response to the level and changes in the

theoretical output gap (i.e., the gap between real output and output that would be obtained

in the absence of nominal rigidities) in addition to inflation. Second, our structural shocks

are all governed by stationary first-order autoregressive processes and their disturbances are

mutually uncorrelated with each other. In the Smets–Wouters model, the exogenous spending

disturbance is affected by a contemporaneous innovation to total factor productivity (TFP)

and the price and wage markup disturbances follow ARMA(1,1) processes. Third, as in the

baseline experiment, the binding shocks mt are incorporated into the monetary policy rule in
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order to take account of the zero lower bound constraint on the nominal interest rate in the

DGP.

The model consists of the following log-linearized equations.10 In what follows, all the

variables are expressed in terms of their percentage deviation from the steady-state balanced

growth path.

c̃t =
λ/γ

1 + λ/γ
c̃t−1 +

1

1 + λ/γ
Etc̃t+1 +

(σc − 1)whl/c

σc(1 + λ/γ)

(
l̃t − Et l̃t+1

)
− 1− λ/γ

σc(1 + λ/γ)

(
r̃t − Etπ̃t+1 + εbt

)
, (6)

ı̃t =
1

1 + βγ1−σc
ı̃t−1 +

βγ1−σc

1 + βγ1−σc
Etı̃t+1 +

1

γ2φ(1 + βγ1−σc)
q̃t + εit, (7)

q̃t =
1− δ

rk + 1− δ
Etq̃t+1 +

rk

rk + 1− δ
Etr̃

k
t+1 −

(
r̃t − Etπ̃t+1 + εbt

)
, (8)

ỹt = ϕp

[
αk̃st + (1− α)l̃t + εat

]
, (9)

k̃st = z̃t + k̃t−1, (10)

z̃t =
1− ψ

ψ
r̃kt , (11)

k̃t =
1− δ

γ
k̃t−1 +

(
1− 1− δ

γ

)[
ı̃t + γ2φ(1 + βγ1−σc)εit

]
, (12)

ỹt = cy c̃t + iy ı̃t + rkky z̃t + εgt , (13)

µ̃pt = α
(
k̃st − l̃t

)
− w̃t, (14)

π̃t =
ιp

1 + βγ1−σcιp
π̃t−1 +

βγ1−σc

1 + βγ1−σcιp
Etπ̃t+1

− (1− ξp)(1− βγ1−σcξp)

ξp(1 + βγ1−σcιp)[(ϕp − 1)εp + 1]
µ̃pt + εpt (15)

r̃kt = −
(
k̃st − l̃t

)
+ w̃t, (16)

µ̃wt = w̃t −
{
σl l̃t +

1

1− λ/γ

[
c̃t −

λ

γ
c̃t−1

]}
, (17)

w̃t =
1

1 + βγ1−σc
w̃t−1 +

βγ1−σc

1 + βγ1−σc
(Etw̃t+1 + Etπ̃t+1)−

1 + βγ1−σcιw
1 + βγ1−σc

π̃t

+
ιw

1 + βγ1−σc
π̃t−1 −

(1− ξw)(1− βγ1−σcξw)

ξw(1 + βγ1−σc)[(ϕw − 1)εw + 1]
µ̃wt + εwt , (18)

r̃t = rr r̃t−1 + (1− rr) (rππ̃t + ryỹt) + εrt +mt (19)

Eq. (6) is the consumption Euler equation, where c̃t denotes consumption, l̃t is labor input,

10See the appendix to Smets and Wouters (2007) for a full description of the model.
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r̃t is the short-term nominal interest rate, π̃t is the inflation rate, εbt captures the risk premium

shock in the return on assets held by households, λ is the degree of external habit persistence

in consumption preferences, γ is the steady-state growth rate, σc is the degree of relative risk

aversion, and whl/c is the steady-state value of labor relative to consumption. Eq. (7) is the

investment adjustment equation, where ı̃t represents investment, q̃t denotes the real value of

the existing capital stock, εit represents the shock to investment efficiency, β is the subjective

discount factor, and φ is the steady-state elasticity of investment adjustment costs. Eq. (8) is

the no-arbitrage condition for the value of capital, where r̃kt is the real rental rate of capital,

δ is the depreciation rate of capital, and rk is the steady-state real rental rate of capital.

Eq. (9) is the Cobb–Douglas production function with fixed costs where ỹt denotes output,

k̃st is effective capital services, εat represents the TFP shock, ϕp is one plus the share of fixed

costs in output, α is the share of capital in production. Eq. (10) gives the effective capital

services used in production, where z̃t and k̃t−1 denote the capital utilization rate and capital

installed in the previous period. Eq. (11) is the condition for the capital utilization rate,

where ψ is determined by a function of the steady-state elasticity of the rate adjustment costs.

Eq. (12) is the capital accumulation equation. Eq. (13) is the aggregate resource constraint,

where εgt represents the exogenous spending shock, cy, iy, ky are the steady-state output ratios

of consumption, investment, and capital. Eq. (14) is the equation for the price markup µ̃pt ,

where w̃t is the real wage. Eq. (15) is the New Keynesian Phillips curve, where εpt represents

the price markup shock, ξp and ιp are the degrees of price stickiness and price indexation to

past inflation, (ϕp − 1) is the steady-state goods market markup, and εp is the curvature of

the Kimball (1995) goods market aggregator. Eq. (16) is the condition for capital and labor

inputs in production. Eq. (17) is the equation for the wage markup µ̃wt , where σl is the inverse

elasticity of labor supply. Eq. (18) is the wage equation, where εwt represents the wage markup

shock, ξw and ιw are the degrees of wage stickiness and wage indexation to past inflation,

(ϕw − 1) is the steady-state labor market markup, and εw is the curvature of the Kimball

(1995) labor market aggregator. Eq. (19) is the monetary policy rule, where rr is the degree

of interest rate smoothing, rπ and ry represent the degrees of interest rate policy responses to

inflation and output gap, respectively, εrt is the monetary policy shock, and mt is the binding

shock.

There are seven structural shocks in the model. Each of them εxt , x ∈ {a, b, g, i, r, p, w}
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follows

εxt = ρxε
x
t−1 + ηxt , ηxt ∼ i.i.d. N(0, σ2x)

where ρx is an autoregressive coefficient and ηxt is a normally distributed innovation with mean

zero and standard deviation σx.

The observation equations are

100∆ log Yt

100∆ logCt

100∆ log It

100∆ logWt

100 log lt

100∆ logPt

100 log rt


=



γ̄

γ̄

γ̄

γ̄

l̄

π̄

r̄


+



ỹt − ỹt−1 + εat

c̃t − c̃t−1 + εat

ı̃t − ı̃t−1 + εat

w̃t − w̃t−1 + εat

l̃t

π̃t

r̃t


,

where γ̄ = 100(γ−1), l̄ is the steady-state hours worked, π̄ = 100(π−1), and r̄ = 100(β−1γσcπ−

1).

4.2 Parameter Setting and Prior Distribution

The true parameter values that characterize the DGP basically follow from the prior means

used in Smets and Wouters (2007), but some are changed so that the resulting probability of

hitting the interest-rate lower bound is comparable (12 periods of 200) to that in our baseline

experiment. To be specific, the steady-state inflation rate π̄ is changed from 0.625 to 0.5, and

the standard deviations of the structural shocks σx, x ∈ {a, b, g, i, r, p, w} are all changed from

0.1 to 0.3.

Then, the model without the zero lower bound constraint is estimated using the artificial

time series generated from the DGP presented above. The second to fourth columns in Table

5 summarize the prior distributions of parameters used for the estimation in the present ex-

periment. As in the preceding experiments, each prior mean is set to the corresponding true

parameter value. For the standard deviations of the prior distributions, we use the same values

as set in Smets and Wouters (2007).
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4.3 Results for the Robustness Experiment

The last two columns in Table 5 show the posterior means and 90 percent credible intervals for

the estimated parameters in the Smets–Wouters type model. As in the baseline experiment,

most of the posterior mean estimates are almost the same as the true parameter values. How-

ever, substantial biases are detected in the estimates of the elasticity of investment adjustment

costs φ and the monetary policy response to inflation rπ, that is, the 90 percent credible in-

tervals for these two estimates do not contain their corresponding true values. The intuition

about the bias in φ is as follows. Without considering the interest-rate lower bound in the

estimation, the model-implied interest rate series is biased. As the transmission effect of the

change in the interest rate on investment is quite strong, the parameter φ that characterizes

the relationship between investment and the interest rate has to be biased in order to fit to the

investment series generated from the DGP. Regarding the bias in rπ, the same explanation as

provided in the previous section applies.

Figure 4 compares the estimated and true impulse responses of output, inflation, and the

nominal interest rate to one standard deviation shocks regarding the TFP, the risk premium,

external demand, investment, monetary policy, the price markup, and the wage markup. As

with the preceding experiments, in each panel, the solid thick line represents the true response,

the solid thin and dashed lines are respectively the posterior mean and 90 percent credible

interval for the estimated response, and the responses are shown in terms of the percentage

deviation from the steady state. A remarkable finding here is that as shown in almost all of the

panels, the true responses lie in the estimated credible intervals, although some of the mean

estimates differ from the true responses. Therefore, we reach the same conclusion as in the

baseline experiment that the parameter biases from ignoring the zero lower bound constraint

only have quite marginal effects on the properties of the model.

5 Conclusion

This paper has investigated the parameter biases in an estimated DSGE model that excludes the

existence of the zero lower bound constraint on the nominal interest rate. To this end, we have

conducted econometric experiments using a standard sticky-price DSGE model. According

to the results in our baseline experiment, some biases are detected in the estimates of the
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monetary policy parameters and the steady-state real interest rate, but the estimates of the

other structural parameters are not biased. However, we have demonstrated that the parameter

biases become large with the increased probability of hitting the zero lower bound. The last

finding cautions researchers against the common practice of estimating linearized DSGE models

without considering the lower bound.

However, as Braun, Körber, and Waki (2012) and Gust, López-Salido, and Smith (2012)

suggest, the solution algorithm in which nonlinearity is considered only in monetary policy rules

but the remaining equilibrium conditions are linearized may lead to an inaccurate assessment of

the lower bound constraint. In this regard, it is an important research agenda to examine how

parameter estimates in linearized DSGE models can be affected by ignoring the true economic

structures characterized by fully nonlinear models.
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Appendix

This appendix presents the full description of the model. In the model economy, there are a

continuum of households, a representative final-good firm, a continuum of intermediate-good

firms, and a monetary authority.

Each household h ∈ [0, 1] consumes final goods Ch,t, supplies labor lh,t, and purchases

one-period riskless bonds Bh,t so as to maximize the utility function

E0

∞∑
t=0

βt

[
(Ch,t − γCt−1)

1−σ

1− σ
−

l1+χ
h,t

1 + χ

]
subject to the budget constraint

PtCh,t +Bh,t = PtWtlh,t + rnt−1Bh,t−1 + Th,t,

where Et is the expectation operator conditional on information available in period t, β ∈

(0, 1) is the subjective discount factor, σ > 0 is the inverse of the intertemporal elasticity of

substitution, γ ∈ [0, 1] is the degree of external habit persistence in consumption preferences,

χ > 0 is the inverse of the elasticity of labor supply, Pt is the price of final goods, Wt is the

real wage, rnt is the gross nominal interest rate, and Th,t is the sum of a lump-sum public

transfer and profits received from firms. The first-order conditions for optimal decisions on

consumption, labor supply, and bond-holding are identical among households and therefore

become

Λt = (Ct − γCt−1)
−σ , (A.1)

Wt =
lχt
Λt
, (A.2)

1 = Etβ
Λt+1

Λt

rnt
πt+1

, (A.3)

where Λt is the marginal utility of consumption and πt = Pt/Pt−1 denotes gross inflation.

The representative final-good firm produces output Yt under perfect competition by choos-

ing a combination of intermediate inputs {Yf,t} so as to maximize profit PtYt −
∫ 1
0 Pf,tYf,tdf

subject to a CES production technology Yt =
(∫ 1

0 Y
1/(1+λp)
f,t df

)1+λp

, where Pf,t is the price of

intermediate good f and λp ≥ 0 denotes the intermediate-good price markup. The first-order

condition for profit maximization yields the final-good firm’s demand for intermediate good

f , Yf,t = Yt (Pf,t/Pt)
−(1+λp)/λp

, while perfect competition in the final-good market leads to

Pt =
(∫ 1

0 P
−1/λp

f,t df
)−λp

.
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Each intermediate-good firm f produces one kind of differentiated goods Yf,t under monop-

olistic competition by choosing a cost-minimizing labor input lt given the real wage Wt subject

to the production function

Yf,t = Atlf,t,

where At represents the exogenous technology level. The first-order condition for cost mini-

mization shows that real marginal cost is identical among intermediate-good firms and is given

by

mct =
Wt

At
. (A.4)

In the face of the final-good firm’s demand and marginal cost, the intermediate-good firms

set prices of their products on a staggered basis as in Calvo (1983). In each period, a fraction

1 − ξ ∈ (0, 1) of intermediate-good firms re-optimize their prices while the remaining fraction

ξ indexes prices to a weighted average of past inflation πt−1 and steady-state inflation π. The

firms that re-optimize their prices in the current period then maximize expected profit

Et

∞∑
j=0

ξj
βjΛt+j

Λt

[
Pf,t

Pt+j

j∏
k=1

(
πιt+k−1π

1−ι
)
−mct+j

]
Yf,t+j

subject to the final-good firm’s demand

Yf,t+j = Yt+j

[
Pf,t

Pt+j

j∏
k=1

(
πιt+k−1π

1−ι
)]− 1+λp

λp

,

where ι ∈ (0, 1) denotes the weight of price indexation to past inflation relative to steady-state

inflation. The first-order condition for the reoptimized price P o
t is given by

Et

∞∑
j=0


(βξ)j

Λt+j

Λt
Yt+j

[
P o
t

Pt

j∏
k=1

(πt+k−1

π

)ι π

πt+k

]− 1+λp

λp

×

[
P o
t

Pt

j∏
k=1

(πt+k−1

π

)ι π

πt+k
− (1 + λp)mct+j

]


= 0. (A.5)

Moreover, the final-good’s price Pt =
(∫ 1

0 P
−1/λp

f,t df
)−λp

can be rewritten as

1 = (1− ξ)

(
P o
t

Pt

)− 1
λp

+ ξ

[(πt−1

π

)ι π
πt

]− 1
λp

. (A.6)

The final-good market clearing condition is

Yt = Ct, (A.7)
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while the labor market clearing condition leads to

Ytdt
At

=

∫ 1

0
lf,tdf = lt, (A.8)

where dt =
∫ 1
0 (Pf,t/Pt)

−(1+λp)/λp

df represents price dispersion across the intermediate-good

firms. Note that this dispersion is of second-order under the staggered price setting and that

its steady-state value is unity.

A monetary policy rule is specified as

log rnt = max

[
ϕr log r

n
t−1 + (1− ϕr)

(
log rn + ϕπ log

πt
π

+ ϕy log
Yt
Y

)
+ zrt , 0

]
. (A.9)

In the absence of the zero lower bound on the nominal interest rate, the monetary authority

adjusts the interest rate following a Taylor (1993) type monetary policy rule where ϕr ∈ [0, 1)

is the degree of interest rate smoothing, rn is the steady-state gross nominal interest rate,

and ϕπ, ϕy ≥ 0 are the degrees of interest rate policy responses to inflation and output. zrt is a

monetary policy shock, which captures unsystematic components of monetary policy.

The equilibrium conditions are (A.1)–(A.9). Log-linearizing the equilibrium conditions

around the steady state and rearranging the resulting equations yields Eq. (1)–(3). The demand

shock zdt and cost shock zpt have been introduced in a reduced form manner, and interpreted

as a shock to consumption preferences and time-varying price markup of intermediate-goods

respectively.
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Table 1: Parameter setting

Parameter Economic interpretation Assigned value

σ Inverse of intertemporal elasticity of substitution 1.000

χ Inverse of elasticity of labor supply 1.000

γ Habit persistence 0.500

ι Price indexation 0.500

ξ Price stickiness 0.750

ϕπ Policy response to inflation 1.500

ϕy Policy response to output 0.125

ϕr Interest rate smoothing 0.500

π̄ Steady-state inflation rate 0.500

r̄ Steady-state real interest rate 0.500

ρd Persistence of demand shock 0.500

ρp Persistence of cost shock 0.500

ρr Persistence of policy shock 0.500

σd Standard deviation of demand shock 0.250

σp Standard deviation of cost shock 0.250

σr Standard deviation of policy shock 0.250
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Table 2: Prior distributions

Parameter Distribution Mean Standard deviation

σ Gamma 1.000 0.150

χ Gamma 1.000 0.150

γ Beta 0.500 0.150

ξ Beta 0.750 0.150

ι Beta 0.500 0.150

ϕπ Gamma 1.500 0.150

ϕy Gamma 0.125 0.150

ϕr Beta 0.500 0.150

π̄ Gamma 0.500 0.150

r̄ Gamma 0.500 0.150

ρd Beta 0.500 0.150

ρp Beta 0.500 0.150

ρr Beta 0.500 0.150

σd Inverse Gamma 0.250 2.000

σp Inverse Gamma 0.250 2.000

σr Inverse Gamma 0.250 2.000
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Table 3: Posterior distributions of parameters in baseline experiment

Baseline Large sample

Parameter True value Mean 90% interval Mean 90% interval

σ 1.000 1.054 [0.829, 1.278] 1.041 [0.950, 1.132]

χ 1.000 1.002 [0.752, 1.240] 1.005 [0.761, 1.250]

γ 0.500 0.439 [0.303, 0.582] 0.467 [0.434, 0.501]

ξ 0.750 0.757 [0.686, 0.826] 0.785 [0.765, 0.806]

ι 0.500 0.495 [0.288, 0.693] 0.479 [0.413, 0.541]

ϕπ 1.500 1.293 [1.107, 1.472] 1.216 [1.158, 1.272]

ϕy 0.125 0.156 [0.000, 0.273] 0.125 [0.094, 0.156]

ϕr 0.500 0.404 [0.340, 0.466] 0.455 [0.440, 0.469]

π̄ 0.500 0.474 [0.344, 0.595] 0.470 [0.442, 0.498]

r̄ 0.500 0.594 [0.514, 0.673] 0.539 [0.522, 0.556]

ρd 0.500 0.470 [0.322, 0.623] 0.516 [0.482, 0.550]

ρp 0.500 0.498 [0.346, 0.647] 0.466 [0.415, 0.515]

ρr 0.500 0.518 [0.412, 0.623] 0.498 [0.474, 0.522]

σd 0.250 0.265 [0.217, 0.310] 0.237 [0.227, 0.247]

σp 0.250 0.240 [0.187, 0.295] 0.228 [0.216, 0.240]

σr 0.250 0.281 [0.240, 0.319] 0.253 [0.245, 0.261]

Notes: In the baseline, the model is estimated using a sample of 200 observations. In the large sample case, the

same model is estimated using a sample of 5,000 observations.

26



Table 4: Posterior distributions of parameters in alternative experiments

Case of low r̄ Case of large σd

Parameter True value Mean 90% interval Mean 90% interval

σ 1.000 1.086 [0.855, 1.326] 0.953 [0.731, 1.175]

χ 1.000 0.997 [0.761, 1.248] 0.994 [0.746, 1.232]

γ 0.500 0.421 [0.290, 0.546] 0.432 [0.308, 0.558]

ξ 0.750 0.762 [0.701, 0.818] 0.764 [0.723, 0.807]

ι 0.500 0.432 [0.269, 0.596] 0.391 [0.237, 0.541]

ϕπ 1.500 1.279 [1.053, 1.492] 1.197 [1.035, 1.346]

ϕy 0.125 0.410 [0.000, 0.823] 0.055 [0.023, 0.077]

ϕr 0.500 0.505 [0.409, 0.598] 0.329 [0.264, 0.391]

π̄ 0.500 0.413 [0.266, 0.560] 0.471 [0.307, 0.628]

r̄ 0.250 0.343 [0.231, 0.461] - -

r̄ 0.500 - - 0.722 [0.617, 0.831]

ρd 0.500 0.527 [0.415, 0.643] 0.516 [0.403, 0.634]

ρp 0.500 0.486 [0.349, 0.622] 0.615 [0.498, 0.733]

ρr 0.500 0.642 [0.583, 0.702] 0.642 [0.557, 0.727]

σd 0.500 - - 0.438 [0.355, 0.516]

σd 0.250 0.266 [0.220, 0.310] - -

σp 0.250 0.253 [0.194, 0.315] 0.203 [0.162, 0.243]

σr 0.250 0.426 [0.337, 0.515] 0.302 [0.264, 0.338]

Notes: In the case of low r̄, the true values are set at r̄ = 0.25 and σd = 0.25. In the case of large σd, the true

values are set at r̄ = 0.5 and σd = 0.5.
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Table 5: Prior and posterior distributions of parameters in the Smets–Wouters type model

Prior distribution Posterior distribution

Parameter Distribution Mean S.D. Mean 90% interval

φ Normal 4.000 1.500 4.852 [4.071, 5.641]

σc Normal 1.500 0.375 1.468 [1.304, 1.622]

λ Beta 0.700 0.100 0.728 [0.685, 0.769]

ξw Beta 0.500 0.100 0.503 [0.442, 0.559]

σl Normal 2.000 0.750 1.502 [0.741, 2.279]

ξp Beta 0.500 0.100 0.500 [0.449, 0.553]

ιw Beta 0.500 0.150 0.420 [0.284, 0.557]

ιp Beta 0.500 0.150 0.459 [0.343, 0.574]

ψ Beta 0.500 0.150 0.482 [0.424, 0.540]

ϕp Normal 1.250 0.125 1.231 [1.182, 1.279]

rπ Normal 1.500 0.250 1.208 [1.015, 1.384]

ρ Beta 0.750 0.100 0.721 [0.674, 0.767]

ry Normal 0.125 0.050 0.093 [0.033, 0.152]

π̄ Gamma 0.500 0.100 0.500 [0.363, 0.626]

100(β−1 − 1) Gamma 0.250 0.100 0.191 [0.087, 0.291]

l̄ Normal 0.000 2.000 -0.210 [-0.673, 0.241]

γ̄ Normal 0.400 0.100 0.399 [0.397, 0.402]

α Normal 0.300 0.050 0.287 [0.259, 0.315]

ρa Beta 0.500 0.200 0.557 [0.468, 0.649]

ρb Beta 0.500 0.200 0.499 [0.416, 0.590]

ρg Beta 0.500 0.200 0.481 [0.374, 0.583]

ρi Beta 0.500 0.200 0.489 [0.384, 0.590]

ρr Beta 0.500 0.200 0.482 [0.379, 0.583]

ρp Beta 0.500 0.200 0.520 [0.406, 0.642]

ρw Beta 0.500 0.200 0.445 [0.339, 0.544]

σa Inv. Gamma 0.300 2.000 0.314 [0.286, 0.343]

σb Inv. Gamma 0.300 2.000 0.318 [0.266, 0.370]

σg Inv. Gamma 0.300 2.000 0.303 [0.276, 0.328]

σi Inv. Gamma 0.300 2.000 0.278 [0.237, 0.320]

σr Inv. Gamma 0.300 2.000 0.290 [0.262, 0.317]

σp Inv. Gamma 0.300 2.000 0.312 [0.266, 0.356]

σw Inv. Gamma 0.300 2.000 0.308 [0.263, 0.352]
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Figure 1: Impulse responses in baseline experiment

(1) Demand shock
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(2) Cost-push shock
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(3) Monetary policy shock
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Notes: The figure shows the impulse responses of output, inflation, and the nominal interest rate (in terms of

the percentage deviation from the steady state) to one standard deviation demand, cost-push, and monetary

policy shocks. The solid thick lines represent the true responses, and the solid thin lines and dashed lines are

respectively the posterior means and 90 percent credible intervals for the estimated responses.
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Figure 2: Impulse responses in alternative case I (r̄ = 0.25)

(1) Demand shock
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(2) Cost-push shock
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(3) Monetary policy shock
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Notes: The figure shows the impulse responses of output, inflation, and the nominal interest rate (in terms of

the percentage deviation from the steady state) to one standard deviation demand, cost-push, and monetary

policy shocks. The solid thick lines represent the true responses, and the solid thin lines and dashed lines are

respectively the posterior means and 90 percent credible intervals for the estimated responses.
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Figure 3: Impulse responses in alternative case II (σd = 0.5)

(1) Demand shock
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(2) Cost-push shock
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(3) Monetary policy shock
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Notes: The figure shows the impulse responses of output, inflation, and the nominal interest rate (in terms of

the percentage deviation from the steady state) to one standard deviation demand, cost-push, and monetary

policy shocks. The solid thick lines represent the true responses, and the solid thin lines and dashed lines are

respectively the posterior means and 90 percent credible intervals for the estimated responses.
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Figure 4: Impulse responses in robustness analysis

(1) TFP shock
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(2) Risk premium shock
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(3) External demand shock
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(4) Investment shock
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(5) Monetary policy shock

0 5 10 15
-1

-0.5

0

0.5

Output

0 5 10 15
-0.4

-0.2

0

0.2

0.4

Inflation

0 5 10 15
-0.1

0

0.1

0.2

0.3

Nominal interest rate

(6) Price markup shock
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(7) Wage markup shock
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Notes: The figure shows the impulse responses of output, inflation, and the nominal interest rate (in terms of

the percentage deviation from the steady state) to one standard deviation shocks in the TFP, the risk

premium, external demand, investment, monetary policy, the price markup, and the wage markup. The solid

thick lines represent the true responses, and the solid thin lines and dashed lines are respectively the posterior

means and 90 percent credible intervals for the estimated responses.
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