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Abstract

Laplace-type estimator has become popular in applied macroeconomics, in partic-

ular for estimation of DSGE models. It is often obtained as the mean and variance of

parameter’s quasi-posterior distribution, which is defined using a classical estimation

objective. We demonstrate that the objective must be properly scaled; otherwise, arbi-

trarily small confidence intervals can be obtained if calculated directly from the quasi-

posterior distribution. We estimate a standard DSGE model and find that scaling up

the objective may be useful in estimation with problematic parameter identification.

It this case, however, it is important to adjust the quasi-posterior variance to obtain

valid confidence intervals.
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1 Introduction

In spite of the popularity of medium-scale dynamic stochastic general equilibrium (DSGE)

models in empirical macroeconomic research, their estimation is often associated with prac-

tical difficulties. For an applied researcher, the problems with estimation range from the

possibility of multiple local solutions to poor identification of model parameters due to the

flatness of the objective function in the vicinity of the extremum. In estimations with classi-

cal objectives, it has become popular to rely on Bayesian methods by using the Laplace type

estimator (LTE) (See Coibion and Gorodnichenko (2011), Schmitt-Grohé and Uribe (2011),

Christiano, Trabandt, and Walentin (2010), Kormilitsina (2011), among others.) The LTE

is a Bayesian alternative to the classical extremum estimators. It consists in formulating the

so-called “quasi-likelihood” function based on a prespecified statistical criterion, which could

be derived from the general method of moments (GMM) objective, the maximum likelihood

or another classical estimator. The quasi-likelihood function implies the quasi-posterior dis-

tribution of model parameters, which can be evaluated using MCMC algorithms, and the

estimate is then obtained as the mean or a quantile of the quasi-posterior distribution.

The popularity of the LTE is largely due to the result in Chernozhukov and Hong (2003),

who demonstrate that the estimator is both theoretically and computationally attractive.

From the computational perspective, the LTE allows to overcome the curse of dimensional-

ity problem related to the search of the extremum in classical estimation, because it relies

on MCMC methods rather than costly search procedures. From the theoretical point of

view, Chernozhukov and Hong (2003) establish that under mild assumptions, the LTE is

asymptotically equivalent to the corresponding frequentist extremum estimator. Moreover,

if the Generalized information equality (GIE) holds, then the variance of the quasi-posterior

distribution provides a consistent estimate for the variance of the corresponding frequentist

estimator. However, if the GIE does not hold, then the variance of the parameter estimate

cannot be approximated by the quasi-posterior distribution. Instead, one should trans-

form the quasi-posterior variance using the “sandwich formula” in Chernozhukov and Hong

(2003).2

In this paper, the focus is on situations where the GIE is not satisfied. More specifically,

we study the LTE derived using a GMM objective. These estimators are popular in empirical

macroeconomic research, however it is often difficult to ensure the GIE in these problems,

2See Theorems 2 and 4 in Chernozhukov and Hong (2003).
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because efficient weighting matrix cannot be reliably computed given the sample size in

these applications.3 Because relying on efficient weighting may significantly hinder the small

sample performance of the estimator, researchers often resort to diagonal or other inefficient

weighting matrices in formulating the GMM objective.

Within the class of GMM problems, our contribution is the following. First, we demon-

strate that even when the weighting matrix is efficient, the GIE may fail if the objective

function is not scaled correctly. We show that while in classical GMM estimation, the scal-

ing of the objective function is not essential for the calculation of variance, proper scaling

is crucial in LTE as it modifies the quasi-posterior distribution. In particular, larger scaling

implies smaller variance of the quasi-posterior distribution. We therefore conclude that one

can calculate confidence intervals directly from quasi-posterior distributions only in efficient

estimation problems with proper scaling of the objective function.

Our second contribution is of practical nature. We find that in empirical applications,

it may be optimal to force deviation from the GIE by scaling up the objective function.

In an empirical exercise, we estimate a simple DSGE model using real and simulated data.

We first document that the variance of the quasi-posterior distribution is generally inversely

proportional to the scaling parameter. Moreover, the variance of the LTE calculated by

properly transforming the variance of the quasi-posterior distribution is robust to the choice

of the scaling parameter. However, we find that these conclusions fail when the scaling is

absent (µ = 1). In this case, both the variance of the MCMC chains, and the variance of

the estimator are usually greater than those at µ > 1, contrary to the predictions of theory.

This result is indicative of the poor performance of the unscaled LTE, which we relate to

the presence of poorly identified parameters and small samples. We confirm this idea in a

Monte Carlo experiment where we repeatedly estimate the model using artificially generated

datasets. We find that increasing the scaling parameter of the objective function allows to

reduce both the bias and variance of parameter estimates. We therefore conclude that in

empirical applications, the scaling of the objective can be used as an instrument to improve

the outcome of estimation. It has to be emphasized, however that confidence intervals of the

estimator in this case must be obtained by appropriately transforming the variance of the

quasi-posterior distribution.

Implementation of the LTE parallels that in the Bayesian estimation, which has also

3This is usually the case in minimum distance estimation problems that aim to match a large number
of impulse responses or moments of the model and data. See Christiano, Trabandt, and Walentin (2010),
Kormilitsina (2011), DiCecio (2009).
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become a popular approach in empirical macroeconomics (See, for example, Fernández-

Villaverde, Guerrón-Quintana, and Rubio-Ramı́rez (2012), Aruoba and Schorfheide (2011),

Fernández-Villaverde (2010), An and Schorfheide (2007) and references therein). The unique-

ness of the LTE however, is that it relies on Bayesian methods to address alternative, classical

estimation problems.4 The LTE based on the MLE is most similar to the Bayesian estima-

tion methods commonly used to estimate DSGE models. Both the LTE and the Bayesian

approach therefore face similar difficulties in empirical applications, stemming from prob-

lematic parameter identification and short data samples. However, while scaling of the

quasi-likelihood function may help resolve these problems for LTE, it cannot be helpful for

Bayesian estimation. The reason is that the Bayesian approach assumes the structural pa-

rameters are of stochastic, rather than deterministic nature. This means that a Bayesian

economist is interested in evaluating the whole posterior distribution rather than the finite

number of moments. The scaling of the objective function modifies the moments of the

quasi-posterior distribution of the LTE in a known manner, which allows to derive an ex-

plicit relationship for the reverse transformation of moments. In Bayesian estimation, the

reverse transformation of the overall distribution is required, which cannot be obtained so

easily, because scaling the log of likelihood implies the power transformation of the likelihood

function.

The paper proceeds as follows. In Section 2, we derive the theoretical relationship between

variances of the LTE and the GMM estimator in the presence of scaling parameter, and test

it by estimating a simple stochastic process. In Section 3, we estimate a typical DSGE model

using real and artificial data to investigate the effect of the scaling parameter on the variance

of the estimated parameter. Finally, Section 4 summarizes the results for a conclusion.

2 Laplace-type estimator for moment-based models

We consider a standard GMM setting where a model is defined by the moment function

ρ(x, θ) : X × Θ 7→ Rr, where X is a subset of Rl and Θ is a compact convex subset of Rp.

r is the number of moment conditions, l is the dimension of the data, and p is the number

of estimated parameters.

4While in this paper, we focus on LTE based on GMM objective, our results can be easily extended
to include other classical estimation methods where the LTE is commonly applied, for example, extremum
estimators that contain nonparametric plug-in components. See Altonji and Segal (1996), Windmeijer (2005),
Newey and Windmeijer (2009) among many others.
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Parameter of interest θ is identified from the unconditional moment vector m(θ) =

E [ρ(X, θ)] = 0, where function ρ(·, ·) might be discontinuous. We assume the solution

to this system exists and is uniquely identified by θ0 according to the following assumption5:

Assumption 1 m(θ) = 0 iff θ = θ0, where θ0 ∈ int(Θ).

Suppose that the data form an i.i.d. sample {xi}ni=1 from the distribution of random variable

X. The sample analog of the unconditional moment function is mn(θ) = 1
n

∑n
i=1 ρ(xi, θ).

The GMM estimator is then defined as θ̂GMM = argsup
θ∈Θ

(Qn(θ)) , where

Qn(θ) = −n

2
mn(θ)

′ W mn(θ), (1)

and W is a positive definite weighting matrix. We assume that the moment function has a

first mean square derivative6:

Assumption 2 There exists a continuous function ṁ(θ) such that

R(θ, δ) = mn(θ + δ)−mn(θ)− ṁ(θ)δ

satisfies E [R(θ, δ)2] /δ2 → 0 for θ in some fixed neighborhood of θ0 and δ in some fixed

neighborhood of the origin.

The sample moment function is assumed to be stochastically equicontinuous:

Assumption 3 For some fixed neighborhood7 of θ0, U(θ0):

sup
θ∈U(θ0)

√
n ∥mn(θ)−mn(θ0)−m(θ)∥

1 +
√
n∥θ − θ0∥

= op(1).

5If the function m(θ) is differentiable, then a necessary condition for Assumption 1 to hold is that the
Jacobi matrix ∂m(θ)/∂θ has rank p.

6This assumption gives a high-level condition that assures that the sample moment function is differen-
tiable in mean square. Chen, Linton, and Van Keilegom (2003) demonstrate that a local linear representation
of a sample function holds for non-smooth functions as well. In chapter 3.2. of “Weak convergence and em-
pirical processes” by Van Der Vaart and Wellner (1996), the authors give primitive conditions for such
expansions to hold, they generally require a “reasonable” bound on the entropy of the class of functions
{ρ(·, θ), θ ∈ Θ} and the smoothness of the expectation E[ρ(X, θ)] in θ.

7We assume the standard Euclidean norm in Rp, and take into account the fact that m(θ0) = 0 according
to Assumption 1.
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The behavior of the GMM estimator is derived from the local linear representation of the

objective function using Assumptions 2 and 3. If mn(θ0) satisfies the Lindeberg condition,

then the GMM estimator is asymptotically normal with asymptotic variance

Vθ = (ṁ(θ0)
′ W ṁ(θ0))

−1
ṁ(θ0)

′W V W ṁ(θ0) (ṁ(θ0)
′ W ṁ(θ0))

−1
, (2)

where V = Var (ρ(X, θ0)).
8

It is important to note that asymptotic properties of the GMM estimator are robust to

the scaling of the objective function Qn(θ). This means that for an alternative objective

function Q̃n(θ) ≡ µQn(θ), the asymptotic properties of the GMM estimator are exactly the

same as for the original estimator. It is easy to see from Formula (2) if one thinks of the

scaling parameter as embedded into the weighting matrix W . For two weighting matrices

W1 and W2 that are proportional to each other so that W1 = µW2, the values of Vθ will be

identical, because the scaling factor µ will cancel as a result of multiplication of W and its

inverse in Formula (2).

Now we consider the Laplace-type estimator. For any h ∈ Rp, consider the local param-

eter sequence {θ(n)}∞n=1 in the neighborhood of θ0 such that each element of the sequence is

defined as

θ(n) = θ0 +
h√
n
− 1

2
(ṁ(θ0)

′Wṁ(θ0))
−1

ṁ(θ0)
′Wmn(θ0).

Denote the third term on the right-hand side Tn/
√
n, so the formula above takes the form

θ(n) = θ0 +
h√
n
+

Tn√
n
,

where

Tn = −
√
n

2
(ṁ(θ0)

′Wṁ(θ0))
−1

ṁ(θ0)
′Wmn(θ0).

If mn(θ0) = Op(1/
√
n), then sequence {θ(n)}∞n=1 concentrates at θ0 as n → ∞. It is re-

centered to account for the location of the minimum of the sample objective function. The

second order expansion of the objective function evaluated at an element θ(n) can then be

8We assume the moments are not degenerate or collinear, meaning that V is a positive definite matrix.
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written as follows

Qn(θ(n)) = Qn(θ0)−
n

4
mn(θ0)

′Wṁ(θ0) (ṁ(θ0)
′Wṁ(θ0))

−1
ṁ(θ0)

′Wmn(θ0)

+
1

2
h′ṁ(θ0)

′Wṁ(θ0)h+ op(1).
(3)

Define the quasi-likelihood function of the LTE using the GMM objective (1) as follows:

Lµ
n(θ) ∝ eµQn(θ),

where µ is the scaling parameter. While in Chernozhukov and Hong (2003) µ = 1, we

allow for a general value of µ to emphasize the importance of choosing this parameter cor-

rectly. Moreover, in empirical applications it might be useful to scale the quasi-likelihood

differently.9

Given some prior distribution π(θ), the quasi-posterior distribution of parameter θ is

defines as

pn(θ) =
exp (µQn(θ)) π(θ)∫

Θ
exp (µQn(θ)) π(θ) dθ

. (4)

Evaluating the quasi-posterior distribution at an element θ(n), one can find that because in

Equation (3), the first two terms on the right-hand side do not depend on h, they mutually

cancel in the numerator and in the denominator in the Formula (4). This means that for

non-degenerate prior densities, asymptotically the posterior distribution in equation (4) will

be dominated by the quadratic term in the expansion ∝ exp
(
−µ1

2
h′ṁ(θ0)

′ W ṁ(θ0)h
)
. The

latter is a multivariate Gaussian density with variance V LTE
µ :

V LTE
µ = µ−1 (ṁ(θ0)

′ W ṁ(θ0))
−1

. (5)

As n → ∞, the quasi-posterior distribution converges to the likelihood in regular models,

and its variance converges to V LTE
µ . Therefore, multiplication of the objective function by

a constant µ proportionally reduces the variance of the quasi-posterior distribution. This

result follows from Theorem 1 presented below.

9We demonstrate potential benefits of increasing the scaling parameter in Section 3.
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Theorem 1 Consider the total variation of moments norm defined as

∥f∥TVM(α) =

∫
(1 + |h|α) f(h) dh.

Under Assumptions 2 and 3, the posterior distribution along the selected parameter subse-

quence θ0 + h/
√
n + Tn/

√
n converges in total variation norm to the Gaussian distribution

with covariance matrix V LTE
µ :∥∥∥∥∥∥∥

1√
n
pn

(
θ0 +

h√
n
+

Tn√
n

)
−

exp
(
−1

2
h′ (V LTE

µ )−1 h
)(

2π det
(
V LTE
µ

)−1
) p

2

∥∥∥∥∥∥∥
TVM(α)

p−→ 0. (6)

The result of this theorem follows from the proof of Theorem 1 in Chernozhukov and Hong

(2003). Theorem 1 implies that the asymptotic variance of the quasi-posterior distribution

used to obtain the variance of the LTE, does not necessarily coincide with the asymptotic

variance of the GMM estimator. As a result, the standard errors from the generated posterior

distribution are not asymptotically valid. Nevertheless, by comparing Equations (2) and (5),

one can see the following relationship between Vθ and V LTE
µ :10

Vθ = µ2 V LTE
µ ṁ(θ0)W V W ṁ(θ0)

′ V LTE
µ . (7)

This formula provides an estimate of Vθ that can be obtained from V LTE
µ . This estimate is

asymptotically equivalent to the corresponding GMM estimate of the parameter variance.

Because the GMM estimate is independent of the scaling parameter µ, the expression on

the right-hand side of this equation is expected to be robust to the choice of parameter µ.

Sometimes, as it happens in the empirical application in Section 3, the right-hand side of

Equation (7) may be sensitive to the choice of the scaling parameter. This can be explained

by one of the following:

(i) The scale of the Hessian of µQn(θ) is compatible with 1/
√
n, meaning that the condi-

tions in Pakes and Pollard (1989) are violated and as a result, Monte Carlo approxi-

mation for the variance is not valid. This may generate a problem calculating Vθ with

low values of µ.

(ii) Large negative values of µQn(θ) lead to quantities exceeding machine infinity for some

10This relationship is also implied by Theorem 2 in Chernozhukov and Hong (2003).
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draws of θ after exponentiation. This means that a significant portion of MCMC sample

consists of highly noisy observations. This may affect Vθ obtained in estimation with

large values of the scaling parameter µ.

(iii) The scale of the proposal density is incompatible with the standard deviation of the

quasi-likelihood function meaning that the convergence of the Monte-Carlo approxima-

tion to the true posterior distribution may be slow (requiring the order of the number

of simulation draws B to be exponential in the sample size n). In other words, Vθ will

be incorrectly calculated, and may vary with the scaling parameter µ, if the estimation

procedure is not performed correctly, so that Markov chains fail to converge for a given

length of the chain.

Example

We illustrate the results of Section 2 in the following simple example, where we estimate the

mean and variance of the i.i.d stochastic process generated by independent draws from the

normal distribution with mean a and variance σ2. The estimated parameters are grouped

in a vector of interest θ = [a;σ2]. The moment conditions are derived from the definition of

the first and the second moments:

ρ(X, θ) =

[
X − θ(1)

(X − θ(1))2 − θ(2)

]
.

For the sample of size n, the model quasi-likelihood function is

Lµ
n(θ) ∼ e−µn

2
mn(θ)′Wmn(θ),

where µ is the scaling parameter, W is a moment weighting function, and the empirical

vector of moments mn(θ) is defined as

mn(θ) =

 1
n

∑n
i=1 (xi − θ(1))

1
n

∑n
i=1

(
(xi − 1

n

∑n
j=1 xj)

2 − θ(2)
)
,

 .
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Note that the Jacobian matrix of the moment conditions is

ṁ(θ0) =

(
−1 0

0 −1

)
,

and the variance of the moment conditions V is

V =

[
θ(2) 0

0 2θ(2)2

]
.

We generate a sample of n = 200 observations from this model parameterized with θ =

[0.5; 0.25]. We estimate the model assuming different specifications for the quasi-likelihood

function and objective. First, we use either identity or efficient weighting matrix to form

the distance function. Second, we vary the scaling parameter µ, from 1 to 1000. The quasi-

posterior distribution for the model parameter is approximated with the standard random

walk Metropolis-Hastings algorithm that produces a chain {θ(i)}Bi=1 where B = 106. We

calculate the asymptotic variance of the quasi-posterior distribution using the formula

V̂ LTE
µ =

n

B

B∑
i=1

(θ(i) − θ̂)(θ(i) − θ̂)′, (8)

where θ̂ = 1
B

∑B
i=1 θ

(i). Then, we evaluate Vθ according to Formula (7). In estimation with

identity weighting matrix, W = I, this formula produces the estimate

V̂θ = µ2V̂ LTE
µ V V̂ LTE

µ ,

and when we use the efficient weighting matrix, W = V −1,

V̂θ = µ2V̂ LTE
µ V −1 V̂ LTE

µ .

Table 1 presents the estimates V̂ LTE
µ and implied V̂θ for different values of the scaling pa-

rameter µ. The first column of the table displays the choice for the parameter µ. Columns

2, 4, and 6 report the elements of the variance-covariance matrix V̂ LTE
µ , and columns 3, 5,

and 7 show the elements of the implied matrix V̂θ. The first row records the true values of

the elements of Vθ.

The results reported in Table 1 verify the theoretical relationship in Equation (7). First,
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columns 2, 4, and 6 of Table 1 reveal that the elements of V̂ LTE
µ are inversely proportional

with parameter µ. On the opposite, the estimates V̂θ are robust to the choice of the scaling

parameter. All estimates of V̂θ match the true variance Vθ very closely. One can also notice

that estimation involving efficient weighting matrix provides almost identical estimates V̂ LTE
µ

and V̂θ when the objective function is not scaled (µ = 1). However, this is not the case for

the estimation based on the identity weighting matrix. One can see that the estimate of the

parameter variance obtained with the LTE procedure is always different from the variance of

the GMM. At the same time, when µ = 1, the estimate of V LTE
µ is close to identity matrix,

which is consistent with Formula (5).

Asymptotic covariance matrix is often used by practitioners to construct asymptotic

confidence intervals and test hypothesis. While Chernozhukov and Hong (2003) demonstrate

that LTE provides a good coverage of asymptotic confidence intervals, it is important to

verify that the coverage is robust to the choice of the scaling parameter µ. Table 2 reports

actual coverage probabilities of the 95-percent asymptotic confidence intervals obtained with

the LTE. The table shows a 95-percent coverage probability for parameters a and σ2 for

estimations using the two choices of the weighting matrix and different scaling parameters

µ. In columns I, the coverage probability is calculated using the variance estimate V̂ LTE
µ ,

while columns II report coverage probability when using the implied parameter variance V̂θ.

Not surprisingly, the larger the scaling parameter µ in columns I, the smaller is coverage.

In this case, the Markov chains become more concentrated around the estimate, resulting

in a smaller probability that the confidence interval contains the true parameter value. At

the same time, the coverage probabilities calculated using V̂θ are just below or at 95 percent

and robust to the choice of the scaling parameter µ. This indicates that intentional scaling

the objective function does not affect the distribution of the estimates, and therefore is not

going to influence the outcome of hypothesis testing.

To summarize, the simple estimation exercise presented demonstrates the following.

First, the variance of the quasi-posterior distribution V LTE
µ is inversely related with µ.

Therefore, unlike in the GMM, researchers must pay attention to the choice of the scal-

ing parameter for the objective function.

Second, the variance of the quasi-posterior distribution V LTE
µ is only equivalent to Vθ

when the objective function is scaled appropriately and uses efficient weighting. In estimation

with inefficient weighting, the variance of the quasi-posterior distribution does not provide

valid standard errors for the estimated parameters. For example, in problems where the
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GMM objective is based on identity, or diagonal weighting matrices, such standard errors

are meaningless and cannot be relied on. However, even when there are reasons that prevent

a researcher from using the efficient estimation objective, for example when the moment

variance-covariance matrix is poorly defined, the proper variance of the estimate can still

be obtained from the variance-covariance matrix V LTE
µ according to Formula (7). Finally,

we demonstrate that standard errors obtained using this formula are robust to the choice

of the scaling parameter µ. While greater scaling does not modify the peaks of the quasi-

likelihood, it increases its curvature and makes the peaks more pronounced. Therefore,

the scaling parameter might become a useful tool in applications with irregular likelihood.

Next section provides some confirming evidence of the usefulness of the scaling parameter in

empirical applications.

3 Laplace-type Estimators for DSGE Models

3.1 Model and Estimation Strategy

Because the estimator is especially popular within the empirical macroeconomic literature,

we test the theoretical results in a simple DSGE model derived from a prototype New

Keynesian macroeconomic model of a closed economy. This allows to study the theoretical

relationships in a more realistic environment, where the model is more complicated, and the

dataset is relatively small.

The log-linear dynamics of the simple model is summarized by three expectational equa-

tions:

ŷt = Etŷt+1 − r̂t + Etπ̂t+1 + ϵ̂t,

π̂t = βEtπ̂t+1 + κŷt + γ̂t,

r̂t = αRr̂t−1 + αππ̂t + αY ŷt + ζ̂t,

where hat denotes log-deviation from steady a state, yt, πt, and rt are output, inflation and

the interest rate, parameters β, and κ are intertemporal discount factor and parameter of

the Phillips curve, αR, απ, and αY are parameters of the monetary policy rule. Finally, ϵt,

γt, and ζt are shock processes, and hat denotes the log deviation from steady state. The
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shocks evolve as AR(1) processes:

ẑt+1 = ρz ẑt + υz
t+1,

where z = {ϵ, γ, ζ, }, and υz
t denote i.i.d zero mean processes with standard deviation σz.

We estimate parameter vector θ:

θ = {αR, απ, αY , κ, ρζ , ργ, ρϵ, 100σζ , 100σγ, 100σϵ},

and calibrate the remaining parameters and steady state quantities as follows: β = 0.9,

Y = 1, R = π/β, π = 1, αR = 0.7, απ = 0.5, αY = 0.15. The vector of observable variables

is xt = [rt, yt, πt]. We match the elements of the variance-covariance matrix cov(xt, xt−l),

for l = 0, 1, ..., 4. Because cov(xt, xt) is symmetric, we have only 42 covariance elements to

match. The distance function is the quadratic form as defined in Equation (1). All sample

moment conditions are summarized in a vector mn(θ):

mn(θ) = [m1,n(θ);m2,n(θ); ...;m42,n(θ)],

where

mi,n(θ) = qhkln − qhkl(θ),

h, k = r, y, π, and l = 0, 1, ..., 4 denotes the lag. Empirical estimates qhkln are calculated as

qhkln =
n∑

t=1

q̂t
n
,

where q̂t = [q̂1t , q̂
2
t , ..., q̂

42
t ], and each moment q̂it is identified by specific values of h, k, and l,

and is calculated as

q̂it = htkt−l −
n∑

j=1

hj

n
·

n∑
j=1

kj
n
,

for t = l + 1, .., n and i = 1, ..., 42. Theoretical covariances, qhkl(θ) are obtained as uncondi-

tional covariances of first-order approximations to the dynamic processes of model variables

h and k−l. In estimation of DSGE models that require higher order approximate solutions

due to the importance of non-linear characteristics,11 the results in Andreasen, Fernández-

11Higher order approximations are necessary in studies of the consequences of uncertainty shocks or
macroeconomic determinants behind risk premia (see Fernández-Villaverde, Guerron-Quintana, Rubio-
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Villaverde, and Rubio-Ramı́rez (2013) can be used to calculate the theoretical moments.

These authors study the statistical properties of the pruned state-space system for second-

and third-order approximations to the solutions of DSGE models, and derive the closed form

solution to first and second moments and impulse response functions.

We use standard Random Walk Metropolis Hastings algorithm to draw from the quasi-

posterior distribution. In each estimation, we obtain the estimate in two steps. In each step,

we create the MCMC chain of 1 million draws.12 In the first step, we run the Metropolis

Hastings algorithm with the purpose to obtain a better starting point. We use the mean

value of the resulting Markov chain as the starting point for the second set of estimations,

as well as to obtain the weighting matrix W . In the Metropolis-Hastings algorithm, we

specify the proposal distribution as multivariate zero-mean Normal with variance cΣ, where

Σ is the inverse of the numerical Hessian of the objective function evaluated at the starting

element of the MCMC chain. We vary parameter c of the proposal distribution to achieve

the acceptance rate in the range of 30 to 40 percent. For each estimation, we verify if the

algorithm converges, and the resulting Markov Chain is stationary. With this purpose, we

visually investigate the Markov chains, including the trace plots, autocorrelation functions,

and cumulative sum plots.

We estimate the efficient weighting matrix using the Newey-West estimator. The variance

of the quasi-posterior distribution is calculated as in Formula (8), and the variance of the

vector of estimates Vθ is obtained from Formula (7), where ṁ(θ̂) is the gradient of the moment

conditions m(θ), evaluated numerically at a quasi-posterior estimate θ̂.

3.2 Results

We first estimate the model using real data for the period from the third quarter of 1954 till

the third quarter of 2010, with the total of 225 observations.13 The quarterly data include

real GDP divided by labor force, GDP deflator, obtained as the ratio of the nominal to

real GDP, and the effective annualized federal funds rate. The data is detrended with the

standard HP filter with a default smoothing parameter of 1600.

Table 3 presents the variance estimates for parameter θ. The upper part of the table shows

the variances V LTE
µ and Vθ for efficient estimation, and the lower part provides the results

Ramı́rez, and Uribe (2011) or van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez (2012)).
12However, we save only every 100th draw to ensure there is no autocorrelation between chain elements.
13The data are obtained from www.bea.gov, the FRED database, and www.bls.gov.
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from estimation using the diagonal weighting matrix.14 Each row in the table documents the

results of an estimation that uses a specific scaling parameter µ to define the quasi-likelihood

function. Column 1 specifies the choice for the scaling parameter for each set of estimations.

We vary the scaling parameter from 1 to 1000.

The results of estimation using both efficient and diagonal weighting matrices demon-

strate that generally, the estimated variance V LTE
µ is indeed smaller for the larger values of

the scaling parameter µ. Moreover, for values of µ larger than 10, the elements of V LTE
µ

are inversely proportional to µ as is expected from Equation (5). This is especially true for

multipliers 10 and 100. When µ = 1000, the inverse proportionality between V LTE
µ and µ

is not so clear for some parameters (αR, κ). We explain this by the possibility of machine

errors, resulting from the need to compare the exponents of large numbers. Similarly, the

estimates of Vθ are very similar across µ in estimations where the scaling parameter µ > 10.

While the estimation results generally agree with the theory, the theoretical relationship of

inverse proportionality of V LTE
µ with µ and robustness of Vθ cannot be validated when µ = 1.

In comparison to estimations with µ > 1, both the variance of the quasi-posterior distribu-

tions, and Vθ in this case are significantly larger for some parameters than what we expect

according to the theory. For example, the variance of the monetary policy rule parameters

απ and αy are 96 and 156 respectively when µ = 1, while they concentrate around 18 and

40 for µ = 10, 100 and 1000.

In an attempt to improve the estimation results for an unscaled model (µ = 1), we

eliminate from estimation the parameters of the Taylor-type monetary policy rule, and re-

estimate the model with the remaining 7 parameters. We set these parameters at values

common in the literature: αR = 0.7, απ = 0.5, and αY = 0.15. The resulting variance

estimates are presented in Table 4. Comparing the estimated variances when µ = 1 with

other choices of µ, we find that the evidence of inverse theoretical relationship between µ and

V LTE
µ improves for an unscaled model. Although in case of µ = 1, the variance estimates are

much more similar to those with larger µ, they are still greater than expected. For example,

with no scaling, the variance of parameter ρζ is 4.76, which is more than four times larger

than those in estimations with µ > 10 (ρζ = 0.84).

To shed more light on the noticeable difference in estimation without quasi-likelihood

scaling, we report parameter estimates in this model in the lower part of Table 4.15 It

14The diagonal elements are inverse elements of the diagonal of the moment variance matrix. We only
report the diagonal elements of the variance-covariance matrices.

15Similar results are obtained when we estimate all 10 parameters including the monetary policy rule.
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becomes evident that even in the model where 7 parameters are estimated, the estimates of

some parameters at µ = 1 are noticeably different from the estimates obtained with larger

scaling. It is important to emphasize that the estimates are very similar across estimations

with µ ≥ 10.

Because increasing the scaling parameter does not change the (local) extrema of the quasi-

likelihood,16 the observed difference in the mean estimate might indicate the asymmetry of

the quasi-posterior distribution. Figures 1 and 2 show the distributions of MCMC chains

in estimation without scaling and with µ = 1000 correspondingly. Figure 1 reveals that

the quasi-posterior distributions of parameter estimates indeed do not look symmetric in

estimation with µ = 1. Figure 2 demonstrates that with substantial scaling (µ = 1000), the

quasi-posterior distributions are symmetric and have a Gaussian form, as in the asymptotic

theory of Chernozhukov and Hong (2003).

There are two possible explanations for the effect we observe. First, the theory that

establishes Gaussian form of quasi-posterior distribution is asymptotic, and the asymmetry

of the quasi-posterior distributions may be due to the finite data sample. The finite sample

problem may become less severe as we reduce the number of estimated parameters. Al-

ternatively or in addition to this, the parameters of monetary policy rule might be poorly

identified. According to Canova and Sala (2009), problematic parameter identification leads

to biased parameters and large and uninterpretable confidence intervals. Removing these pa-

rameters from estimation therefore may result in less biased estimates and more meaningful

confidence intervals.

We now use artificial datasets to estimate the model and see whether the deviation from

theory at µ = 1 can be explained by small sample deficiencies, or it can be ascribed to

identification problems in the population objective. We first reproduce the same results as

the ones reported in Tables 3 and 4. With this purpose, we generate a short and a long

datasets, with lengths of T = 200 and 5000, respectively. The samples are generated by

feeding in the shock processes into the model dynamic equations. The model is calibrated

by θ0 as follows

θ0 = {0.7, 0.5, 0.15, 0.7, 0.8, 0.8, 0.8, 1, 1, 1}.

We estimate 10 parameters using these data samples. To ensure that the results are not

influenced by specific samples, we repeat estimation for 100 samples and consider the average

values for the variance estimates. The resulting average variances V LTE
µ and implied Vθ are

16Unless the weighting matrix changes significantly.
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presented in Tables 5 and 6. We use the star upperscripts to report when the variance at

no scaling (µ = 1) falls within the 95 percent confidence intervals of the variance estimates

obtained with µ >≥ 10. The number of stars indicates the number of times the estimates

fall outside the confidence bands. For example, parameter with three stars indicates that its

variance estimate at µ = 1 is significantly different from all variance estimates at µ = 10, 100,

and 1000, while one star indicates the variance at µ = 1 is significantly different from one

variance estimate at µ = 10, 100 or 1000.

Table 5 provides estimates obtained with the small sample. The table reveals that the

variance of the quasi-posterior distributions decrease at a rate of µ for µ > 1. At the same

time, the estimate’s variance Vθ is robust to the choice of µ when scaling is present (µ > 1),

however for some parameters, the variance is larger in the absence of scaling (µ = 1), and

statistically different from the estimates with µ > 1. In efficient estimation, the largest

discrepancy observed for parameter σζ : 70.4 at µ = 1 versus 20.2 at µ = 100. This is the

only parameter with statistically larger variance at no scaling than in the presence of scaling.

When the diagonal weighting matrix is used to formulate the objective, the positive effect of

scaling is more pronounced. Namely, 8 out of 10 estimated parameters demonstrate variance

estimates that are statistically larger in the absence of scaling than when some scaling is

present. In addition, the asymptotic variance of some parameters is substantially larger

without scaling: for example, the variance of σζ at µ = 1 is more than 100 times larger than

the one obtained with µ = 100 (13782 versus 134).

Table 5 provides estimates obtained with the long sample. Generally, the results are very

similar to the results of Table 5. As can be seen from this table, even when the dataset is

large (5000 observations) and the objective uses efficient weighting, some problem remains

with the theoretical justification of relationship (7) in the absence of quasi-likelihood scaling.

Again, the effect is more pronounced with the diagonal weighting matrix. Overall, although

to a smaller extent, the conclusions we draw from the results in Tables 5 and 6 resemble

those obtained with the actual data.

We now restrict estimation to 7 parameters and estimate the model using the long and

short datasets, and diagonal or efficient weighting matrices in formulating the objective

function. The resulting elements of the average variance matrix Vθ are presented in Table

7. First of all, we observe that for all four scenarios, the estimates are much more similar

across µ, including µ = 1, than in Tables 5 and 6. The strongest similarity of the estimates

is observed in estimation with efficient weighting. In fact, we find that for both short and

17



long samples and all parameters, the estimate of Vθ at µ = 1 is not significantly different

from any of its estimates at µ > 1. Therefore, we observe that Vθ is robust to the choice

of µ for all values of µ, including 1. However, some noticeable discrepancy at µ = 1 is still

present in estimation using diagonal weighting. Namely, the variance estimates at µ = 1

are larger and statistically different from those obtained with µ > 1 for at least two out of

seven parameters, for both short and long data samples. Comparing these results with the

results in Tables 5 and 6 we conclude that the sensitivity of parameter variance at µ = 1 is

more probably associated with poor identification of parameters, although the choice of the

weighting matrix may also important, especially in relatively small samples.

The sensitivity of the variance estimates often manifests itself as increased variance at low

scaling, therefore scaling up of the objective function may help produce smaller confidence

intervals. If scaling does not increase the bias of the estimate, then adjusting the scaling

parameter can become a useful tool helping to improve the quality of confidence intervals.

Table 8 reports the bias and the variance of the parameter estimate θ in estimation of 10

model parameters assuming diagonal weighting and short data sample. The statistics are

calculated using the data from the same experiment as the one that produces the lower

part of Table 5. The bias is the absolute value of the average deviation of the parameter

estimate from the true value, expressed in percentages relative to the true parameter value.

The variance is the variance of the parameter estimate calculated over 100 of estimations.

The table demonstrates that scaling the objective does not have a negative effect on the

quality of the estimates. On the opposite, we find that the average bias decreases as we

scale up the objective function for all parameters except κ. The largest bias reduction

is observed for parameter σζ , where bias reduces more than 100 times. On average, the

bias of each parameter decreases by the factor of 16. Besides the positive effect on bias of

the estimate, we observe that parameters are estimated more precisely when the scaling is

present. Namely, the variance of the parameter estimates decreases with µ for 6 parameters

out of 10. For some parameters, such as απ, αY , and σζ , the variance decreases drastically

when scaling parameter increases above µ = 1. This is the case for parameters απ, and σζ ,

where scaling of the objective allows to reduce the variance by a factor of approximately 100.

Therefore, precise estimation of those parameters in the absence of scaling is problematic,

and increasing the scaling parameter definitely improves the outcome of estimation.

We evaluate the average bias and the variance for the remaining estimations in Tables

5 through 7 and find that the bias and the variance improve with µ to a larger extent for
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the results in Table 5 (short dataset) than in Table 6 (long dataset). In these tables, we

estimate 10 model parameters and suspect poor parameter identification. The improvement

in the bias is much less noticeable if it exists at all for the results in Table 7, where we

believe the parameters are well identified. Therefore, we conclude that the reliance on the

objective scaling can be especially helpful in problems with the possibility of problematic

parameter identification. While we do not provide explicit rules on how to choose the

scaling parameter,we recommend running several estimations assuming different scaling of

the objective.17 Then, any parameter µ can be chosen from the range of values for which Vθ

is approximately constant across µ. We leave this for the future research to develop rules

for the optimal choice of objective scaling.

4 Conclusion

This paper suggests that in empirical estimations using the LTE derived from the GMM,

scaling of the objective function could improve the quality of the confidence intervals, es-

pecially when parameters are poorly identified. One reason for this is that the objective

function may be relatively flat in the vicinity of the proposed estimate, and its scaling would

increase the curvature without changing the peaks of the quasi-likelihood, therefore allow-

ing to estimate parameters more precisely. We confirm this idea by estimating a typical

DSGE model from the empirical macroeconomic research. We find that without scaling, the

variance of the estimate can be larger than expected in theory, especially when estimation

involves parameters that are poorly identified.

It is important to remember, however that if the GMM objective is inappropriately

scaled, then it is no longer possible to obtain confidence intervals directly from the variance

of the quasi-posterior distribution. In this paper, we demonstrate that the variance of the

quasi-posterior distribution and the scaling parameter are inversely related. Therefore, if the

variance of the LTE is calculated directly as the variance of the quasi-posterior distribution,

then arbitrarily small confidence intervals can be obtained by scaling up the objective. This

finding is closely related with the result in Chernozhukov and Hong (2003) who show that

if the GIE does not hold, then the variance of the quasi-posterior distribution is not a

valid estimate of confidence intervals. Often, it is difficult to ensure the GIE in problems

17Producing several long enough MCMC chains using Matlab is very time-consuming, however the esti-
mation procedure is much faster if using a Fortran compiler. The Fortran codes to estimate the model in
this paper are available on request from the authors.
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of empirical macroeconomics, where often, moment conditions are highly correlated, which

makes it difficult to obtain a quality estimate for the efficient weighting matrix. In this

literature, the LTE is becoming more popular as an alternative to a classical GMM estimator

because of its ease of use and asymptotic equivalence with GMM.

5 Appendix

Table 1: Simple example: Estimates of parameter’s variance-covariance matrix

µ Va = 0.25 Cov(a, σ2) = 0 Vσ2 = 0.125
V LTE
µ Vθ V LTE

µ Vθ V LTE
µ Vθ

Identity weighting matrix
1 0.28 0.28 0.0081 0.0076 0.13 0.13
5 0.055 0.27 0.0017 0.0082 0.025 0.12
10 0.027 0.27 0.0009 0.0094 0.013 0.13
50 0.0055 0.28 0.00018 0.0096 0.0025 0.13
100 0.0027 0.27 8.4e-005 0.0082 0.0013 0.13
500 0.00055 0.27 1.9e-005 0.01 0.00026 0.13
1000 0.00028 0.28 1e-005 0.012 0.00013 0.13

Efficient weighting matrix
1 1 0.28 -0.00039 0.0083 0.97 0.12
5 0.2 0.28 0.00013 0.0089 0.2 0.13
10 0.1 0.28 -0.00012 0.0082 0.1 0.13
50 0.02 0.28 -1.7e-006 0.0087 0.02 0.13
100 0.01 0.27 -4.5e-005 0.0068 0.01 0.13
500 0.002 0.27 2.3e-006 0.009 0.002 0.13
1000 0.001 0.28 1.9e-007 0.0088 0.001 0.13

Notes: The first column of the table displays the choice for the parameter µ. Columns 2, 4,
and 6 report the elements of the variance-covariance matrix V LTE

µ , and columns 3, 5, and 7 show
the elements of the implied matrix Vθ. The first row indicates the true values of the elements of
variance-covariance matrix of the GMM estimator.
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Table 2: Simple example: Coverage probabilities
Identity weighting matrix Efficient weighting matrix

I II I II
µ a σ2 a σ2 a σ2 a σ2

1 100 99.9 94.7 93.9 93.6 95.4 94.2 94.3
5 91.7 98.9 93.9 94.4 58.5 65.3 95.2 95.1
10 78 91.3 94.2 92.9 46.8 43.4 95.3 93.1
50 43.4 53.2 95.7 92.4 19.7 20.6 94.2 93.9
100 30.4 42.6 94.9 93.6 15.1 18.2 95.4 93.7
500 13.7 18.8 93.3 92.4 7.6 7.1 94.1 93.6
1000 11.2 14.5 93 91.6 5.3 5.4 94.7 93.2

Notes: The table reports 95-percent coverage probabilities as percentages. Each number is
based on 1000 estimations using randomly generated datasets of 200 observations. In Columns I,
we use variance V LTE

µ to calculate coverage probability, while Columns II rely on Vθ.
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Figure 1: Quasi-posterior distribution in estimation with µ = 1

Notes: The graphs show the quasi-posterior distributions for the estimation using the
actual data. This graph is obtained using MCMC chain of 10 million elements.
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Figure 2: Quasi-posterior distribution in estimation with µ = 1000

Notes: The graphs show the quasi-posterior distributions for the estimation using the
actual data. This graph is obtained using MCMC chain of 1 million elements.
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Table 4: Estimated variances and parameters: nθ = 7, real data, W efficient

µ κ ρζ ρϵ ργ σζ σϵ σγ

Efficient weighting matrix: V LTE
µ

1 0.359 15.3 0.0494 1.72 0.172 0.164 0.324
10 0.0227 0.224 0.0049 0.168 0.0183 0.019 0.0346
100 0.00222 0.0227 0.000489 0.0169 0.00193 0.0019 0.00353
1000 0.00022 0.00225 5.01e-005 0.00167 0.000192 0.000193 0.000351

Vθ

1 0.301 4.76 0.0559 2.51 0.0446 0.143 0.395
10 0.199 0.843 0.0388 2.07 0.0981 0.15 0.429
100 0.197 1.04 0.0375 2.13 0.116 0.147 0.45
1000 0.192 1.04 0.039 2.08 0.116 0.151 0.444

Parameter estimates
1 0.121 0.604 0.949 0.72 0.05 0.157 0.142
10 0.0998 0.884 0.954 0.734 0.0416 0.147 0.128
100 0.0979 0.894 0.954 0.739 0.0396 0.147 0.125
1000 0.0977 0.895 0.954 0.739 0.0394 0.147 0.125

Notes: See notes to Table 3, with the exception that the estimated parameter excludes the
coefficients of the monetary policy rule (nθ = 7).
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Table 7: Vθ in a model with 7 estimated parameters.

µ κ ρζ ρϵ ργ σζ σϵ σγ

Efficient weighting matrix: long sample
1 0.562 0.063 0.346 0.341 0.577 5.23 1.81
10 0.552 0.0621 0.338 0.327 0.576 5.16 1.8
100 0.551 0.061 0.335 0.331 0.581 5.13 1.79
1000 0.554 0.0623 0.337 0.341 0.578 5.19 1.82

Short sample
1 0.581 0.0621 0.669 0.326 0.377 4.21 1.7
10 0.482 0.0423 0.248 0.307 0.353 3.8 1.59
100 0.447 0.0423 0.244 0.25 0.344 3.47 1.5
1000 0.528 0.051 0.26 0.22 0.362 3.84 1.5

Diagonal weighting matrix: long sample
1 9.09 0.278 14.2∗∗∗ 0.909 3.82 190∗∗∗ 21.8
10 9.49 0.355 2.9 0.844 3.59 99.5 23.6
100 9.7 0.368 1.98 0.831 3.43 84.3 24
1000 9.67 0.384 2.84 0.828 3.8 95 24.1

Short sample
1 11.9 1.63∗∗∗ 45.9∗ 3.2 12.2∗∗∗ 86.7 50
10 8.34 0.468 20.1 1.53 5.4 97.8 37
100 6.93 0.436 8.52 1.32 5.06 75.2 29.7
1000 8.26 0.434 2.84 1.16 5 70.3 30.2

Notes: Table shows the asymptotic variance estimate (Vθ) in estimations with a short (n =
200) and long (n = 5000) datasets of artificial data, when the estimated parameter excludes the
coefficients of the monetary policy rule (nθ = 7), using the efficient or diagonal weighting matrix in
the objective, and various scaling levels (µ = 1, 10, 100, and 1000). Each row presents results from
estimation with a specific objective function. The numbers represent variance estimates averaged
over 100 model estimations, where each estimation uses a unique dataset generated from the true
model. Stars distinguish parameters with estimates of Vθ obtained with µ = 1 that are significantly
different from estimates of Vθ obtained with µ = 10, 100 and 1000. The number of stars indicates
the number of times the estimates fall outside the confidence bands. For example, parameter with
three stars indicates that its variance estimate at µ = 1 is significantly different from all variance
estimates at µ = 10, 100, and 1000, while one star indicates the variance at µ = 1 is significantly
different from one variance estimate at µ = 10, 100 or 1000.
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M. Uribe (2011): “Risk Matters: The Real Effects of Volatility Shocks,” American

Economic Review, 101(6), 2530–61.

Fernández-Villaverde, J., P. A. Guerrón-Quintana, and J. Rubio-Raḿırez
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Raḿırez (2012): “The term structure of interest rates in a DSGE model with recursive

preferences,” Journal of Monetary Economics, 59(7), 634–648.

Van Der Vaart, A. W., and J. A. Wellner (1996): Weak Convergence and Empirical

Processes. Springer.

Windmeijer, F. (2005): “A finite sample correction for the variance of linear efficient

two-step GMM estimators,” Journal of Econometrics, 126(1), 25–51.

30


