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Abstract

This paper investigates a propagation mechanism of the energy price shock in a
model where capital utilization is associated with costly energy consumption. En-
dogenous depreciation is an important element of the model, as it has been shown to
produce a significant negative effect of energy prices on output. I show that the am-
plifying effect of endogenous depreciation is determined by the choice of the functional
form and calibration strategy for the energy cost function. My estimates of the energy
cost function allow to conclude that the energy price shock has only a moderate effect
on output in this model, while endogenous depreciation mitigates rather than amplifies
the effect of the energy price shock.
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1 Introduction

Since the work of Kim and Loungani (1992), macroeconomic models often introduce energy as
an added factor of production. Because the estimated share of energy as a constituent of total
U.S. gross domestic product (GDP) is very small, such models have experienced criticism
based on their inability to explain the sizeable effects of energy price increases on economic
activity observed in the 1970s (Rotemberg and Woodford (1996)). This criticism has, in turn,
encouraged the development of new approaches to modeling the energy sector, including
Finn’s (2000) suggestion to exploit the idea of the technological relationship between energy
and capital utilization, recognizing that energy is necessary to produce the service flow
from capital (Throughout the article, I refer to Finn’s framework as the energy-as-cost, or
EC model.) Another crucial element of the EC model is its assumption of a variable capital
depreciation rate, which is tied to the degree of capital utilization. Finn (2000) demonstrates
that the EC model with endogenous depreciation can produce a sizeable output drop after
a rise in energy prices.1

Economists generally agree that endogenous depreciation tied to variable capital utiliza-
tion creates a strong amplifying effect in the propagation of different shocks in the econ-
omy. For example, Burnside and Eichenbaum (1996) document this result for the neutral

0Corresponding author: Anna Kormilitsina, annak@smu.edu.
1The contribution of variable depreciation in the propagation of energy price shocks is easy to recognize

in Finn’s model, because without variable depreciation, that model is observationally equivalent to a more
standard energy-in-production model.
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technology and government spending shocks; Finn (2000), Leduc and Sill (2004) and Aguiar-
Conraria and Wen (2007) emphasize the amplifying effect of endogenous depreciation in their
models with exogenous energy prices. In this paper, I argue that endogenous depreciation
in the EC model may not necessarily serve as an amplifier for the effect of the energy price
shock. In Section 2, I demonstrate that the choice of the functional form for the capital’s
energy cost function is important to generate the amplified effect on output. This sensitivity
of the amplifying effect to the functional form reveals the need for further empirical evidence
regarding the energy costs function. In Section 3, I estimate the elasticity of the energy cost
function with respect to capital utilization using the data on energy use, capital stock and
capacity utilization. I find that this elasticity is generally smaller than 1, which is impossible
to justify assuming a standard, constant elasticity function. I also demonstrate that the
elasticity of the marginal energy costs with respect to capital utilization is an important
parameter to determine the quantitative response of the economy to the energy price shock.
The estimates of this elasticity are in the range of 7 and 10. I calibrate the model using the
empirically estimated energy cost function and conclude that the effect of the energy price
shock on output is only moderate in this model.

2 Simple Model and Analysis

Consider a standard real business cycle model modified to include the energy sector in a way
similar to Finn (2000). The representative household’s utility is a standard concave function
of consumption ct and leisure 1− ht

E0
∞∑
t=0

βtU(ct, 1− ht), (1)

where β ∈ [0, 1) is the intertemporal discount factor and Et denotes conditional expectations
at time t. Households invest to build future capital kt+1 according to the dynamic law

kt+1 = (1− δ(ut))kt + it, (2)

where it is investment and δ(ut) is the rate of capital depreciation, which varies with the
intensity of capital utilization (δ′(ut), δ

′′(ut) > 0). As in Finn (2000), energy et is necessary
to provide capital services for final goods- producing firms. The quantity of energy needed
(et) is determined by the following technological constraint:

et ≥ a(ut)kt. (3)

That is, the required minimum quantity of energy is proportional to the existing capital
stock and depends on the intensity of capital use ut. The necessary ratio of energy to capital
a(ut) varies with the intensity of capital utilization ut. The energy-to-capital ratio a(ut)
satisfies the properties of a cost function: a′(·), a′′(·) > 0. In what follows, I refer to a(ut)
as the energy cost function.
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The representative household’s budget constraint can now be written as

ct + pe,tet + it = wtht + rkt utkt,

where pe,t is the real price of energy, wt is the wage rate and rkt is the rental rate of capital
services. Production of final goods yt involves capital services, utkt and labor ht according
to the constant returns to scale production technology:

yt ≤ f(utkt, ht), (4)

where f(·, ·) is increasing and concave. I assume that all energy is produced within the
economy and that the cost of extraction is zero,2 which gives rise to the following resource
constraint:

ct + it ≤ yt. (5)

Finally, the real price of energy follows an exogenous stochastic AR(1) process,

log

(
pe,t
pe

)
= ρpe log

(
pe,t−1

pe

)
+ ϵt, (6)

where pe is the steady-state price of energy, ρpe ∈ [0, 1) is the autoregressive parameter and
ϵt is i.i.d(0, σpe), with σpe > 0.

The set of equilibrium conditions includes the resource constraint (5), the energy require-
ment (3), the ratio of intratemporal optimality conditions for consumption ct and labor ht,

−U2(ct, 1− ht)

U1(ct, 1− ht)
= f2(utkt, ht), (7)

the intertemporal optimality condition for the choice of future capital kt+1:

U1(ct, 1− ht) = βEtU1(ct+1, 1− ht+1)[f1(ut+1kt+1, ht+1)ut+1+
(1− δ(ut+1))− pe,t+1a(ut+1)]

(8)

and the optimal choice of capital utilization ut,

f1(utkt, ht) = δ′(ut) + pe,ta
′(ut). (9)

To understand the propagation mechanism of energy prices on output in this simple model
and the role of the endogenous rate of depreciation, it is convenient to start with Figure 1.
This figure depicts the response of output and capital utilization to a 10% increase in the
energy price in the two versions of the model. The solid blue line represents the responses
in the model with variable utilization rate and the dashed red line shows the responses in
the model when the depreciation rate is constant (δ′(ut) = 0). The models’ parameters are
calibrated in a standard way, as reported in Table 1, and the energy cost function assumes

2This assumption helps to eliminate the negative wealth effect from the rise in the price of energy and
allows to focus on the transmission of the energy price shock through the capital utilization margin.
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a constant elasticity form, as in Finn (2000):

a(ut) =
υI
υII

uυII
t , (10)

where υI > 0 and υII > 1. In the figure, quarters are shown along the horizontal axis and
percentage deviations in output and utilization from their steady state values are presented
along the vertical axis. The impulse responses in the figure reveal that, when energy prices
increase, output and capital utilization decrease. The maximum drop in output is observed
on impact in both models. Output falls as much as 1.5% in a model with endogenous
depreciation, while it decreases by only 0.7% if the depreciation rate is constant. Therefore,
the figure demonstrates that the presence of endogenous depreciation is associated with an
amplified effect of the energy shock.

For further analysis, it is useful to decompose the effect of the shock into a direct and
indirect effects. The direct effect is associated with the impact of the energy price only,
assuming all other endogenous variables stay unchanged. The direct effect propagates in
the economy through the optimality condition (9), which equalizes the marginal product of
capital services with their marginal costs.3 Higher energy prices increase the marginal costs
of capital due to energy use, resulting in the inefficiently large level of capital utilization.
In addition, if the energy price shock is long-lasting, then higher future energy prices will
decrease the return on capital according to Equation (8), resulting in a drop in investment.
The indirect effect of the energy price shock is due to the adjustment of endogenous variables
to an increase in pe,t. For example, an increase in the energy price causes a drop in the capital
utilization rate, which at least to some extent, lowers the marginal cost of rented capital.

The final effect of the shock on the economy is determined by the strength of the direct
and indirect impact of the energy price increase. To evaluate the quantitative contribution
of each effect, I use the first-order log-linear approximation to Equation (9):

ϵ
uk/h
f1

ˆ
(
uk

h
)
t
= γût + ωp̂e,t, (11)

where x̂t = log(xt/x) is the log deviation of a variable xt from its steady state value x,
ϵyx = ∂log(x)/∂log(y) is the elasticity of x with respect to y evaluated at a steady state,
ω = pea

′(u)/(pea
′(u)+ δ′(u)), with ω ∈ [0, 1], can be interpreted as the strength of the direct

effect of the energy shock and γ = (1 − ω)ϵuδ′ + ωϵua′ > 0 measures the indirect effect of the
shock. Notice that the larger ω implies a stronger negative effect from higher energy prices,
while larger values of γ, on the other hand, ensure that the mitigating effect of lowering
utilization rates is more pronounced.4 It is important to note that both ω and γ differ
across the versions of the models with and without variable depreciation. For example, if
the rate of capital depreciation is constant, then ω = 1; otherwise, ω < 1. This implies
that the direct negative effect of energy prices on capital cost is quantitatively smaller in the
presence of endogenous depreciation. While this finding may seem surprising in light of the
evidence presented in Figure 1, it simply suggests that the indirect effect, measured by γ

3The marginal costs consist of marginal depreciation and energy costs of capital use.
4This is so because the larger γ is, the less the utilization rate needs to fall to counter the direct effect of

higher energy prices.
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must also be different in the two versions of the model. Notice that γ is a weighted average
of elasticities of the marginal costs components with respect to capital utilization, with the
weights determined by the relative importance of depreciation or energy in marginal capital
costs. Because these quantities are determined by the slope and curvature of a(ut) and
δ(ut), how these functions are calibrated is important for the resulting quantitative response
of output to the energy price shock.

To some extent, parametrization of the cost functions is dictated by steady state equilib-
rium conditions. For example, one may notice that the following steady state relationship
must be satisfied for the energy cost functions in the two versions of the model:

pea
′
cons(u) = pea

′
var(u) + δ′(u), (12)

where subscripts cons and var help to distinguish between the constant and the variable
depreciation rate models, respectively, and the no-subscript variables denote their steady-
state values.5 Because δ′(u) > 0, Equation (12) implies

a′var(u) < a′cons(u). (13)

In addition to the steady state restrictions, the form of the energy cost function may also
be important in determining the direct and indirect effects of the energy shock, especially
if it restricts parameters determining the slope and curvature of the cost function. For
example, when the energy cost function takes the constant elasticity form, as in Equation
(10), then ϵua = υII and ϵua′ = υII − 1. Therefore, only one parameter, υII , determines the
two elasticities. Notice that because a′(u) = ϵua(u/a(u)), and because u and a(u) = e/k are
usually calibrated using the data statistics, elasticity ϵua defines the slope of the energy costs
function. Therefore, the choice of υII determines both the slope a′(u) and the elasticity of
marginal costs ϵua′ . One implication of this restriction is that, in addition to marginal energy
costs, the elasticity ϵua′ has to differ across the constant and variable depreciation versions of
the model as well. More specifically, due to relationship (13), elasticity ϵua′ is smaller in the
version of the model with variable depreciation,6 and the same is true regarding parameter γ
in Formula (11), which is smaller in the model with endogenous depreciation. Consequently,
it turns out that when the energy cost is the constant elasticity function, energy shocks are
more costly, and output falls more in the presence of variable depreciation than it does in
the constant depreciation version.

To break the relationship between elasticities ϵua and ϵua′ imposed by the constant elasticity
function, one may consider the following modification of the energy cost function:

a(ut) = υ0 +
υI
υII

uυII
t , (14)

where υ0 represents the energy expenditures required to maintain a certain capital level,
even when capital is not in use. While as previously ϵua′ = υII − 1, the elasticity ϵua is now

5Appendix provides more details about the calibration strategy.
6For example, in Finn (2000), the ratio a′′cons/a

′
cons ≈ 7 and a′′var/a

′
var ≈ 0.6. Thus, (ϵua′)cons is more than

10 times greater than (ϵua′)var.
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determined by both parameters υ0 and υII , as follows

ϵua = υII

[
E/K − υ0
(E/K)

]
.

Therefore, ϵua and ϵua′ are determined by two parameters, and can be calibrated independently.
I use the specification in Equation (14) to evaluate the effect of the elasticity of marginal
energy costs ϵua′ on the implied dynamics of the model following an energy price shock. Figure
2 produces the contemporaneous impulse response of output to the energy price shock of
10% for a variety of values of ϵua′ , from 0.3 to 10, with a step of 0.2. The output drop is
presented in percentages from the steady state along the vertical axis of the graph, and ϵua′
is shown on the horizontal axis. The solid blue line in the figure depicts the response in the
model with endogenous depreciation, while the dashed green line represents the response in
the model, in which the depreciation rate is constant. In both cases, a negative relationship
is observed between the elasticity ϵua′ and the size of the negative response of output to the
shock. This agrees well with the intuition described above: larger ϵua′ implies larger γ in
Formula (11). Therefore, a smaller adjustment of the capital utilization rate is sufficient
to counter the negative direct effect of the energy price shock, which makes the shock less
expensive in terms of output.

Point A in Figure 2 corresponds to the response of output in the baseline calibration
with constant elasticity specification and endogenous depreciation. As follows from Table
1, this model imposes ϵua′ = 0.66. Output drops by 1.48% in this model after the energy
shock. Point B shows the response of output in the corresponding model with constant
depreciation. The constant elasticity specification of the energy cost implies the elasticity
ϵua′ is 5.97. The resulting drop of output on impact is approximately 0.74%. If ϵua′ were
0.66 instead of 5.97 in the model where the depreciation rate is constant, then output would
drop by approximately 2.81%, which is almost four times larger than the output drop at
point B. This situation is represented by point C in the figure, which corresponds to the
EC model with constant depreciation and the implied energy cost function determined by
Equation 14. Comparing the response of output at points A and C, one may conclude that
if the elasticity of the marginal energy cost did not change when producing output responses
in Figure 1, then endogenous depreciation would actually mitigate the effect of the energy
shock, and would result in an output drop twice as small as that in the model with constant
depreciation rate.

The response of output according to the blue line in Figure 2 assumes the elasticity ϵua is
the same as in the baseline calibration: ϵua = 1.66. I now evaluate the role the elasticity of
the energy cost function ϵua plays in determining the quantitative response of output to the
energy price shock. This can be done by adopting a more general, quadratic functional form
for the energy cost function:

a(ut) = a0 + aI(ut − u) + aII(ut − u)2. (15)

The benefit of this function is that the marginal costs in the steady state a′(u) = aI , and are
independent of either a0 or aII . As a result, the steady state does not restrict the parameters
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of the slope and curvature of this function, allowing to choose different values for ϵua and ϵua′ .
7

To see how the choice of ϵua affects the predicted response of output to the shock, I replicate
the blue curve in Figure 2 for different values of ϵua: 0.5, 1, 1.5, 2 and 2.5. The thin grey curves
in Figure 2 show the resulting responses. The grey curve on top of the figure corresponds to
the calibration ϵua = 0.5, and the lowest curve assumes ϵua = 2.5. Such positioning of output
response curves is very intuitive: the larger the elasticity ϵua, the closer ω is to 1, and the
more substantial is the direct effect of the energy price shock on the economy, resulting in
a greater output drop. Therefore, the bigger ϵua, the lower the output response curve in this
graph.

To summarize, Figure 2 reveals that output response to energy shocks in the model is
extremely sensitive to the choice of the functional form and the calibration of the energy
cost function. Depending on what the elasticities of the energy cost function a(u) are, the
output drop immediately after a 10% energy price increase may vary anywhere between 0.5
and 4%. Additional evidence on the relationship between energy-capital ratio and capital
utilization is therefore needed to help identify the effect from energy price shocks in the EC
model.

3 Quantitative Evaluation of the Energy Cost Function

The empirical literature does not provide much evidence on the elasticities of the energy
cost function. Finn (2000) was the first to model the relationship of energy-to -capital ratio
and capital utilization. However, Finn relies on the steady state equilibrium conditions to
calibrate this ratio. In her paper, the elasticity of the marginal energy cost is 0.64. Leduc
and Sill (2004) also calibrate these parameters to match the energy-capital ratio so that
the elasticity of marginal energy cost is 0.94. Both studies rely on the constant elasticity
specification for the energy cost function.

There is a growing amount of literature in macroeconomics that estimates parameters of
the capital cost function within medium-scale DSGE models, although the cost of capital
use is not necessarily tied to energy use. Such studies usually conclude that the parameters
of the capital cost function are small and difficult to identify. For example, Christiano,
Eichenbaum, and Evans (2005) fix the elasticity of marginal cost at a small number due
to identification difficulties. Kormilitsina (2011) estimates the parameters of a quadratic
energy cost function modeled in a DSGE framework by matching impulse responses, and
finds that the energy cost function is virtually flat, with the reported elasticity of marginal
energy cost being very small at 0.03 and not significantly different from zero. In Christiano,
Eichenbaum, and Trabandt (2015), the estimate of the cost function for the adjustment of
capital utilization is ϵua′ = 0.053.8 Therefore, the existing evidence suggests that for the cost

7Notice that because only the first two derivatives of a(ut) are important for the linear approximate
solution of the model, the power specification in Equation 14 is equivalent in terms of impulse responses to
the quadratic form, as in Equation (15) when a0 = α0+

υI

υII
uυII , aI = υIu

υII−1 and aII = 0.5υI(υI−1)uυII−2.
For a power specification of a(ut), the steady state requires that at least one of these parameters to be fixed
and therefore cannot be varied.

8The slope of the function is similar in these studies, as it is pinned down by the steady state equilibrium
conditions.
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function is approximately linear and almost flat. However, the results in these studies may
be biased, as they do not use the data on energy in estimation.

To provide a plausible calibration of the energy cost function, I collect quarterly data on
energy use, capital and capacity utilization rate and estimate the technological relationship
of the type described in Equation (3). The data on energy use consist of the total primary
use of energy in commercial, transportation and industrial sectors.9 Capital is the chain-
type quantity index for the net stock of private nonresidential fixed assets, provided by BEA.
Because these data are only available at an annual frequency, I obtain the quarterly data
by interpolation. Capital utilization rates are not directly observable. However, in many
studies, the capacity utilization rate is used as a proxy for capital utilization.10 I aggregate
monthly data on capacity utilization by simple averaging. The data set covers the first
quarter of 1973 until the end of 2013, determined by availability of the energy use data.

Figure 3 plots the energy-capital ratio over time. The data exhibit a clear, negative
trend. This observation is in agreement with the modeling strategy in Kormilitsina (2011),
which assumes that the growing energy prices induce technological improvements that require
reduced energy use per unit of capital over time. I detrend the data by estimating the log-
linear regression:

log(
Et

Kt

) = − 3.27
(0.005)

− 0.005
(1.1×10−4)

(t− t̄) + errt,

where errt is the error term and t̄ is the mean of the time trend variable t, to ensure the
detrended ratio retains the mean value of the original data. In the analysis below, I use
the detrended series: ˆ(E/K)t = Et/Kte

0.005(t−t̄), which is shown with a green dashed line
in Figure 3. Figure 4 presents the scatter plot of the detrended energy-capital ratio, shown
along the vertical axis, and capacity utilization along the horizontal axis. The plot reveals
the positive relationship between utilization and energy-capital ratio.11 This relationship
also appears convex.

To evaluate the parameters of the energy cost function, I first estimate the elasticity with
respect to capital utilization by a simple OLS regression of energy-capital ratio on capacity
utilization and a constant, both in logs. The estimated regression model is12

log
ˆ

(
Et

Kt

) = −3.12
(0.02)

+ 0.67
(0.09)

log(CUt) + ξt,

The resulting estimate of the elasticity is ϵua = 0.67 and it is statistically significant, with the
standard deviation of 0.09. Clearly, because ϵua smaller than 1, this elasticity value cannot
justify a constant elasticity function for the energy cost a(ut), because when ϵua < 1, the cost
function is concave rather than convex. However, this smaller value does not necessarily
violate the convexity assumption in the case of specifications (14) or (15). Therefore, it is
important to consider alternative, less restrictive functional forms for a(ut).

9The data are in quadrillion of BTU, and are available on the EIA web site in monthly frequencies, which
are aggregated into quarterly frequencies and correct for seasonality.

10See, for example, Christiano, Eichenbaum, and Trabandt (2015) and Finn (2000), among others.
11The correlation coefficient of the two series is moderately positive at 0.51.
12I obtain very similar results when I include the deterministic trend as a regressor and do not detrend

the energy to capital ratio.
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I proceed by estimating a quadratic specification for the energy cost function. In par-
ticular, I use the ratio of energy to capital as the dependent variable, and the demeaned
capacity utilization rate, together with its squared value and a constant as three indepen-
dent variables.13 The estimated regression model is:

ˆ
(
E

K
)
t
= 0.038

(0.0002)
+ 0.036

(0.005)
(CUt − CU) + 0.17

(0.075)
(CUt − CU)2 + ξt,

where CU is the mean value of CUt. The implied elasticities of the fitted energy cost function
are ϵua = 0.77 and ϵua′ = 7.62, both statistically significant, indicating the importance of the
non-linearity in the relationship of energy to capital ratio and utilization.

Alternatively, I estimate parameters a0, a1 and a2 of specification (14) by fitting the data
with the non-linear least squares estimator. The resulting non-linear regression model is

ˆ
(
E

K
)
t
= 0.035

(0.0012)
+ 0.024

(0.011)
CU

9.99
(4.11)

t + ξt. (16)

The implied elasticities are ϵua = 0.78 and ϵua′ = 8.99, which agree with the estimates in other
model specifications. Figure 5 plots the estimated non-linear relationship in Equation (16),
together with the scatter plot of the data. I find that, at least over the range of the available
data for capacity utilization, the resulting curve is very similar to the one I obtain using the
fitted values of the quadratic regression.

Table 2 summarizes the estimates of the energy cost elasticities obtained from the three
regression models. The estimates for the log-linear model provide smaller elasticity ϵua than
do those in the non-linear regression models. This specification, however, is not consistent
with the convexity assumption of the energy cost function. The estimates of elasticities
in the quadratic and nonlinear models are very similar. The elasticity of the energy cost
function is in the range of 0.7 to 0.8, and the estimate of the elasticity of the marginal
energy costs varies around 7 and 9. If these estimates are mapped into Figure 2, then the
response of output to the energy price increase would only be moderate. Point D in Figure 2
illustrates this result for the calibration of ϵua = 0.75 and ϵua′ = 8. Notice that the difference in
output responses with and without endogenous depreciation will be very small, provided the
elasticity of the marginal energy costs remains constant. Figure 6 verifies this observation.
The figure shows the response of output and capital utilization for 10 quarters after an
unexpected 10% increase in the energy price in the EC models with and without variable
depreciation. Strikingly, at no time after the shock, does the response of output exceed 0.7%.
Moreover, the output drop is slightly larger in the model with constant depreciation rate
than it is in the case of variable depreciation, pointing to a mitigating effect from variable
depreciation. The responses of capital utilization are related in a similar way. If compared
with the responses in Figure 1, one can see that both the magnitude, and the difference in
the responses of output and capital utilization is smaller in Figure 6.

13I use demeaned regressors for convenience, following the majority of the empirical literature. Although
the demeaned utilization rate and its squared value are not technically independent regressors, I find that
correlation between them is very small, while the raw utilization rate and its squared value are almost
perfectly correlated.
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It is important to point out that, everywhere in this analysis, I assume the depreciation
function has a constant elasticity form, similar to the one in Equation (10). This deprecia-
tion function is calibrated to ensure the steady state equilibrium conditions are satisfied. At
Point D of Figure 2, the elasticity of the marginal depreciation cost is 0.48. This value is
close to the one obtained by Burnside and Eichenbaum (1996), who use the same constant
elasticity functional form for δ(ut). However, because this function does not seem to be a
good choice for the energy cost function, the same may be true in the case of the depreci-
ation function. Indeed, Basu and Kimball (1997) argue for the choice of the power with a
constant specification similar to Equation (14), to describe the depreciation function. These
authors find that the elasticity of marginal depreciation is approximately 1. To evaluate
how an alternative specification for the depreciation function might influence the results in
this paper, I obtain the responses of output and utilization, as in Figure 6, assuming the
specification proposed by Basu and Kimball (1997) and calibrating ϵuδ′ = 1. The resulting
responses are very similar, with the response of output even more moderate under variable
depreciation (output falls 0.52% on impact versus 0.6% in Figure 6). Therefore, the results
reported in Figures 1, 2 and 6 are robust to an alternative specification of the depreciation
function.

4 Conclusion

The following conclusions can be made to summarize the results of this paper. Firstly, be-
cause the estimate of ϵua is below 1, the constant elasticity formulation is not an appropriate
functional form for the energy cost function. A quadratic function, or a power functional
form with a constant coefficient is therefore a preferred approximation of the relationship be-
tween the energy-to-capital ratio and capital utilization. Secondly, as the theoretical model
suggests, knowing the slope and the curvature of the energy cost function is crucial to deter-
mine the quantitative effects of energy shocks. This finding emphasizes the importance of
additional empirical research that would shed more light on the appropriate calibration of
the energy cost function as well as on other sources of costs for capital use. The estimates
obtained in this paper suggest that energy price shocks generate only moderate effects on
output, contrary to the substantial effect observed using the conventional calibration. More-
over, in an empirically calibrated EC model, endogenous depreciation is unlikely to amplify
the negative effect of energy price shocks.
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5 Tables and Figures

Table 1: Parametrization of the EC model
variable δ constant δ

ϵua elasticity of energy cost 1.66 6.97
ϵua′ elasticity of marginal energy cost 0.66 5.97
β Intertemporal discount factor 0.99
θ Share of capital 0.3
δ Depreciation 0.025
h Labor 0.3
u Utilization 0.81
pe Energy price 1
se Share of energy 0.043

Table 2: Elasticities of the energy cost function: Empirical evidence

Log-log Quadratic Power
ϵua 0.67 0.77 0.78

(0.09) (0.1) (0.1)

ϵua′ - 7.62 8.99
- (3.17) (4.11)

R2 0.26 0.26 -
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Figure 1: Impulse response of output with and without endogenous depreciation

Notes: The figures show the impulse response functions as percentage deviations from steady states
in response to a 10% increase in the price of energy pe. Percentages are shown on the vertical axis and
quarters are shown on the horizontal axis. The solid blue lines correspond to Model 1, which features the
constant depreciation rate and power energy cost function. The dotted red line corresponds to Model 2,
which features variable depreciation and power energy cost function.
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Figure 2: Immediate output response as a function of the marginal energy cost elasticity

Notes: The graph demonstrates that the amplifying effect of the energy price shock in the presence
of variable depreciation results from increased elasticity of the marginal energy cost function. The figure
shows the immediate response of output to a 10% increase in the energy price depending as a function of
the steady state elasticity of the marginal energy cost. The solid blue line shows the response in the model
featuring endogenous depreciation rate, while the red dashed line depicts the output response assuming
the depreciation rate is constant. Point A shows the response when calibration is induced by power
(constant elasticity) specification for a(ut). Point B represents the response in the same model with a
constant depreciation, and reveals a smaller output drop in the model with constant depreciation rate.
Point C represents the response of output in the model with constant depreciation, when the elasticity of
the marginal energy costs coincides with that in the model with endogenous depreciation. Point D shows
the response in the model with endogenous depreciation, where the depreciation function is parameterized
using the estimated elasticities of the marginal energy costs. The thin grey lines provide the response of
output versus ϵua′ for five alternative calibrations of ϵua ranging from 0.5 to 2.5.
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Figure 3: Energy-to-capital ratio

Notes: The solid blue line is the energy to real capital ratio in trillion BTU (seasonally adjusted) per
unit of capital in dollars of 1999. The dotted green line is the detrended series.
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Figure 4: Energy-capital ratio and capacity utilization

Notes: The top picture displays the time series of energy to capital ratio in trillion BTU (seasonally
adjusted) per unit of real capital.
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Figure 5: Energy-to-capital ratio and capacity utilization, data and the fitted model

Notes: The data are the same as in Figure 4. The fitted model is the model with power specification
and a constant, as in Equation (16).
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Figure 6: Response of output with estimated parameters of energy cost function

Notes: See notes to Figure 1.
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6 Appendix. Proof of the steady state relationship

(12)

First note that the parameters of the production technology and steady state quantities of
factors are identical across the two models. Therefore, the values of the marginal product of
capital on the left-hand side of equation (9) are the same in the models with and without
endogenous depreciation. As a result, the total marginal costs on the right-hand side of
formula (9) are also identical, which results in the relationship 12.

In the steady state, the marginal productivity of capital services on the left-hand side
of Equation (9) depends exclusively on the calibration of the production block, which stays
unchanged across models. Specifically, in the case of the Cobb-Douglass production technol-
ogy, where f(uk, h) = Aukθh1−θ , the marginal productivity of capital in the steady state is

f1(uk, h) = θ
y

uk
. (17)

Substituting this expression into the steady state of condition (8), the latter can be simplified
as

1 = β(θ
y

k
+ 1− δ − pee

k
). (18)

Parameters δ, θ and β are calibrated according to Table 1. The steady-state ratio of energy
expenditures to capital is

pee

k
=

pee

y

y

k
= se

y

k
, (19)

where se is the calibrated share of energy. Now, one can substitute this formula into Equation
(18) to derive

y

k
=

1
β
− 1 + δ

θ − se
.

Because β, θ, δ and se are the same in the models with and without variable depreciation,
and since steady state capital utilization rate is determined by calibration, the steady-state
ratio y/k, the marginal productivity of capital services, and thus the total marginal costs of
capital are invariant to the assumption of variable depreciation.

17



References

Aguiar-Conraria, L., and Y. Wen (2007): “Understanding the Large Negative Impact
of Oil Shocks,” Journal of Money, Credit and Banking, 39(4), 925 – 944.

Basu, S., and M. S. Kimball (1997): “Cyclical Productivity with Unobserved Input
Variation,” NBER Working Papers 5915, National Bureau of Economic Research, Inc.

Burnside, C., and M. Eichenbaum (1996): “Factor-Hoarding and the Propagation of
Business Cycle Shocks,” The American Economic Review, 86(5), 1154–1174.

Christiano, L. J., M. Eichenbaum, and C. A. Evans (2005): “Nominal Rigidities
and the Dynamic Effects of a Shock to Monetary Policy,” Journal of Political Economy,
113(1), 1–45.

Christiano, L. J., M. S. Eichenbaum, and M. Trabandt (2015): “Understanding
the Great Recession,” American Economic Journal: Macroeconomics, 7(1), 110–67.

Finn, M. G. (2000): “Perfect Competition and the Effects of Energy Price Increases on
Economic Activity,” Journal of Money, Credit and Banking, 32(3), 400–416.

Kim, I.-M., and P. Loungani (1992): “The Role of Energy in Real Business Cycle
Models,” Journal of Monetary Economics, 29.

Kormilitsina, A. (2011): “Oil Price Shocks and the Optimality of Monetary Policy,”
Review of Economic Dynamics, 14(1), 199–223.

Leduc, S., and K. Sill (2004): “A Quantitative Analysis of Oil-Price Shocks, Systematic
Monetary Policy, and Economi Downturns,” Journal of Monetary Economics, 51(4),
781–808.

Rotemberg, J. J., and M. Woodford (1996): “Imperfect Competition and the Effects
of Energy Price Increases on Economic Activity,” Journal of Money, Credit and Banking,
28(4), 549–577.

18


