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Abstract. In this paper, we derive the asymptotic properties of average derivative estimators

when the regressors are contaminated with classical measurement error and the density of this

error is unknown. Average derivatives of conditional mean functions are used extensively in

economics and statistics, most notably in semiparametric index models. As well as ordinary

smooth measurement error, we provide results for supersmooth error distributions. This is a

particularly important class of error distribution as it includes the popular Gaussian density.

We show that under this ill-posed inverse problem, despite using nonparametric deconvolution

techniques and an estimated error characteristic function, we are able to achieve a
√
n rate

of convergence for the average derivative estimator. Interestingly, if the measurement error

density is symmetric, the asymptotic variance of the average derivative estimator is the same

irrespective of whether the error density is estimated or not.

1. Introduction

Since the seminal paper of Powell, Stock and Stoker (1989), average derivatives have enjoyed

much popularity. They have found primary use in estimating coefficients in single index models,

where Powell, Stock and Stoker (1989) showed that these estimators identify the parameters of

interest up-to-scale. They have also been employed to great effect in the estimation of consumer

demand functions (see, for example, Blundell, Duncan and Pendakur, 1998, and Yatchew, 2003)

and sample selection models (for example, Das, Newey and Vella, 2003). Finally, several testing

procedures have also made use of these estimators (see, for example, Härdle, Hildenbrand and

Jerison, 1991, and Racine, 1997).

A key benefit of average derivate estimators is their ability to achieve a
√
n rate of con-

vergence despite being constructed using nonparametric techniques. Powell, Stock and Stoker

(1989), among many others, demonstrated this parametric rate in the standard case of correctly

measured regressors. Fan (1995) extended this result to allow for regressors contaminated with

classical measurement error from the class of ordinary smooth distributions, for example, gamma

or Laplace. In that paper, it was shown that average derivative estimators, constructed using de-

convolution techniques, were able to retain the
√
n rate of convergence enjoyed by their correctly
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measured counterparts. However, this result relied on knowledge of the true error distribution

and did not cover the case of supersmooth error densities, which includes Gaussian error.

Extending these results to supersmooth measurement error is not a trivial extension, and it

is not clear a priori whether this parametric rate can be achieved in this case. Indeed, in many

estimation and testing problems, convergence rates and asymptotic distributions are fundamen-

tally different between ordinary smooth and supersmooth error densities (see, for example, Fan,

1991, van Es and Uh, 2005, Dong and Otsu, 2018, and Otsu and Taylor, 2019).

Furthermore, no result has been provided regarding the asymptotic properties of average

derivative estimators in the more realistic situation where the measurement error density is

unknown. Much recent work in the errors-in-variables literature has been aimed at relaxing the

assumption of a known measurement error distribution, and deriving the asymptotic properties

of estimators and test statistics in this setting (see, for example, Delaigle, Hall and Meister, 2008,

Dattner, Reiß and Trabs, 2016, and Kato and Sasaki, 2018).

Measurement error is rife in datasets from all fields. It is a problem that affects economic,

medical, social, and physical data sets, to name just a few. In response to the slow convergence

rates achieved by nonparametric deconvolution techniques, practitioners may shy away from the

use of these estimators in the face of classical measurement error. By showing that we can still

obtain a parametric rate of convergence even in the worst case scenario of supersmooth error and

an estimated error characteristic function, we hope to encourage greater use of nonparametric

estimation in applied work when covariates are contaminated with error.

Moreover, since the curse of dimensionality (which plagues all nonparametric estimators) is

exacerbated in the presence of measurement error, the potential gain from using average deriva-

tives is increased when regressors are mismeasured. In particular, in the case of ordinary smooth

error densities, the convergence rate of deconvolution estimators, although slower than stan-

dard nonparametric estimators, remains polynomial. However, for supersmooth densities, this

convergence typically deteriorates to a log(n) rate.

In the next section, we describe the setup of our model, discuss the assumptions imposed, and

provide our main result. All mathematical proofs are relegated to the Appendix.
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2. Main result

2.1. Setup and estimator. Consider the nonparametric errors-in-variables model

Y = g(X∗) + u, E[u|X∗] = 0, (1)

X = X∗ + ε,

where Y is a scalar dependent variable, X∗ is an unobservable error-free scalar covariate, X

is an observable covariate, u is a regression error term, and ε is a measurement error on the

covariate. Suppose the density function f of X∗ and the regression function g are continuously

differentiable, we are interested in estimating the density weighted average derivative

θ = E[g′(X∗)f(X∗)] = −2E[Y f ′(X∗)], (2)

where g′ and f ′ are the first-order derivatives of g and f , respectively. The second equality

follows from using integration by parts (see Lemma 2.1 of Powell, Stock and Stoker, 1989).

The key use of such density weighted average derivatives is in single-index models and partially

linear single-index models. Taking g(X) = g(X ′1β,X2) for some unknown link function g with

X = (X1, X2), we obtain the partially linear case; when X2 is removed, this becomes the single-

index model. Such specifications are very general and cover a wide variety of regression models.

For example, binary choice models, truncated and censored dependent variable models, and

duration models (see Ichimura, 1993, for a more detailed discussion). They can also be used as

a simple dimension reduction solution to the curse of dimensionality.

For identification purposes, it is necessary to make some normalization restriction on β. This

is because any scaling factor can be subsumed into g. Hence, this parameter of interest is only

identified up to scale. Due to the linear index structure, the density weighted average derivative

identifies this scaled β.

If we directly observe X∗, θ can be estimated by the sample analog − 2
n

∑n
j=1 Yj f̃

′(X∗j ), where

f̃ ′ is a nonparametric estimator of the derivative f ′. However, if X∗ is unobservable, this esti-

mator is infeasible. On the other hand, when the density function fε of the measurement error

ε is known (and ordinary smooth), Fan (1995) suggested estimating θ by evaluating the joint

density h(x, y) of (X∗, Y ) and the derivative f ′(x) in the expression

θ = −2

ˆ ˆ
yf ′(x)h(x, y)dxdy, (3)
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by applying the deconvolution method. Let i =
√
−1 and f ft be the Fourier transform of a

function f . If fε is known, based on the i.i.d. sample {Yj , Xj}nj=1 of (Y,X), the densities f and

h can be estimated by

f̃(x) =
1

nbn

n∑
j=1

K
(
x−Xj

bn

)
, h̃(x, y) =

1

nb2n

n∑
j=1

K
(
x−Xj

bn

)
Ky

(
y − Yj
bn

)
,

where bn is a bandwidth, Ky is a (ordinary) kernel function and K is a deconvolution kernel

function defined as

K(x) =
1

2π

ˆ
e−itx

K ft(t)

f ftε (t/bn)
dt.

By plugging these estimators into (3), Fan (1995) proposed an estimator of θ and studied its

asymptotic properties (again, when f ftε is known and ordinary smooth).

In this paper, we extend Fan’s (1995) result to the cases where (i) fε is unknown and sym-

metric around zero but repeated measurements on X∗ are available, and (ii) fε is known and

supersmooth. Since the second result is obtained as a by-product of the first one, we hereafter

focus on the first case. Suppose we have two independent noisy measurements of the error-free

variable X∗, i.e.,

Xj = X∗j + εj and Xr
j = X∗j + εrj ,

for j = 1, . . . , n. Under the assumption that fε is symmetric, its Fourier transform f ftε can be

estimated by (Delaigle, Hall and Meister, 2008)

f̂ ftε (t) =

∣∣∣∣∣∣ 1n
n∑
j=1

cos{t(Xj −Xr
j )}

∣∣∣∣∣∣
1/2

. (4)

By plugging in this estimator, the densities f and h can be estimated by

f̂(x) =
1

nbn

n∑
j=1

K̂
(
x−Xj

bn

)
, ĥ(x, y) =

1

nb2n

n∑
j=1

K̂
(
x−Xj

bn

)
Ky

(
y − Yj
bn

)
,

where

K̂(x) =
1

2π

ˆ
e−itx

K ft(t)

f̂ ftε (t/bn)
dt.

Then the parameter θ can estimated by

θ̂ = −2

ˆ
yf̂ ′(x)ĥ(x, y)dxdy

= − 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
K̂′
(
x−Xj

bn

)
K̂
(
x−Xk

bn

)
dx, (5)
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where f̂ ′ and K̂′ are the first-order derivatives of f̂ and K̂′, respectively, and the second equality

follows from
´
yKy((y− Yk)/bn)dy = bnYk. Here we have derived the estimator for the case of a

continuous Y . However, our estimator θ̂ in (5) can be applied to the case of a discrete Y as well.

Throughout this paper, we will focus on the case of a single covariate to keep the notation

simple. The proposed method, however, can easily adapt to the multivariate case. In particular,

when there are multiple covariates and one of them is mismeasured, i.e.,

Y = g(X∗, Z) + u,

where Z = (Z1, . . . , ZD) is a vector of D correctly measured covariates, the parameters of interest

are

θx = E

[
∂g(x, z)

∂x

∣∣∣∣
(X∗,Z)

fX∗,Z(X∗, Z)

]
= −2E

[
Y
∂fX∗,Z(x, z)

∂x

∣∣∣∣
(X∗,Z)

]
,

θd = E

[
∂g(x, z)

∂zd

∣∣∣∣
(X∗,Z)

fX∗,Z(X∗, Z)

]
= −2E

[
Y
∂fX∗,Z(x, z)

∂zd

∣∣∣∣
(X∗,Z)

]
,

for d = 1, . . . , D, and can be written as

θx = −2

ˆ ˆ
y
∂fX∗,Z(x, z)

∂x
h(x, y, z)dxdydz,

θd = −2

ˆ ˆ
y
∂fX∗,Z(x, z)

∂zd
h(x, y, z)dxdydz,

for the joint densities fX∗,Z and h of (X∗, Z) and (X∗, Y, Z), respectively.

LetKz : RD → R be a (ordinary) kernel function. If fε is known, fX∗,Z and h can be estimated

by

f̃X∗,Z(x, z) =
1

nbD+1
n

n∑
j=1

K
(
x−Xj

bn

)
Kz

(
z − Zj
bn

)
,

h̃(x, y, z) =
1

nbD+2
n

n∑
j=1

K
(
x−Xj

bn

)
Kz

(
z − Zj
bn

)
Ky

(
y − Yj
bn

)
,

and θx and θd can be estimated by

θ̂x = − 2

n2b2D+3
n

n∑
j=1

n∑
k=1

Yk

ˆ ˆ
K′
(
x−Xj

bn

)
K
(
x−Xk

bn

)
Kz

(
z − Zj
bn

)
Kz

(
z − Zk
bn

)
dxdz,

θ̂d = − 2

n2b2D+3
n

n∑
j=1

n∑
k=1

Yk

ˆ ˆ
K
(
x−Xj

bn

)
K
(
x−Xk

bn

) ∂Kz

(
z−Zj
bn

)
∂zd

Kz

(
z − Zk
bn

)
dxdz.
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We expect that analogous results to our main theorem can be established for this estimator as

well.

2.2. Asymptotic properties. We now investigate the asymptotic properties of the average

derivative estimator θ̂ in (5). Let G = gf . For ordinary smooth measurement error densities, we

impose the following assumptions.

Assumption OS.

(1): {Yj , Xj , X
r
j }nj=1 is an i.i.d. sample of (Y,X,Xr) satisfying (1). g(·) = E[Y |X∗ = ·]

has p continuous, bounded, and integrable derivatives. The density function f(·) of X∗

has (p+ 1) continuous, bounded, and integrable derivatives, where p is a positive integer

satisfying p > α+ 1.

(2): (ε, εr) are mutually independent and independent of (Y,X∗), the distributions of ε

and εr are identical, absolutely continuous with respect to the Lebesgue measure, and the

characteristic function f ftε is of the form

f ftε (s) ∼ 1∑α
v=0Cv|s|v

for all t ∈ R,

for some finite constants C0, . . . , Cα with C0 6= 0 and a positive integer α.

(3): K is differentiable to order (α+ 1) and satisfies

ˆ
K(x)dx = 1,

ˆ
xpK(x)dx 6= 0,

ˆ
xlK(x)dx = 0, for all l = 1, . . . , p− 1.

Also K ft is compactly supported on [−1, 1], symmetric around zero, and bounded.

(4): n−1/2b−2(1+3α)
n log(b−1n )−1/2 → 0, and n1/2bpn → 0 as n→∞.

(5): V ar(r(X,Y )) <∞, where

r(X,Y ) =
α∑
v=0

(−i)vCv[G
(v+1)(X)− Y f (v+1)(X)].

The i.i.d. restriction on the data from Assumption (1) is standard in the literature and is

imposed merely for ease of derivation rather than necessity. The second part of this assumption

requires sufficient smoothness from the regression function and density function of X relative to

the smoothness of the measurement error. Assumption (2) is the conventional ordinary smooth

assumption for the measurement error. Assumption (3) requires a kernel function of order p to

remove the bias term from the nonparametric estimator. The first part of Assumption (4) requires

that the bandwidth does not decay to zero too quickly as n → ∞. This is necessary to ensure
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the asymptotic linearity of the estimator and apply a Hoeffding projection. The particular rate

depends on the parameters of the measurement error characteristic function. The second part of

Assumption (4) ensures the bandwidth approaches zero sufficiently fast to remove the asymptotic

bias from the nonparametric estimator. Finally, Assumption (5) is a high-level assumption on

the boundedness of the asymptotic variance of the average derivative estimator.

For the supersmooth case, we impose the following assumptions.

Assumption SS.

(1): {Yj , Xj , X
r
j }nj=1 is an i.i.d. sample of (Y,X,Xr) satisfying (1). g(·) = E[Y |X∗ = ·]

and the Lebesgue density f(·) of X∗ are infinitely differentiable.

(2): (ε, εr) are mutually independent and independent of (Y,X∗), the distributions of ε

and εr are identical, absolutely continuous with respect to the Lebesgue measure, and the

characteristic function f ftε is of the form

f ftε (t) = Ce−µ|t|
γ

for all t ∈ R,

for some positive constants C and µ, and positive even integer γ.

(3): K is infinitely differentiable and satisfies

ˆ
K(x)dx = 1,

ˆ
xlK(x)dx = 0, for all l ∈ N.

Also K ft is compactly supported on [−1, 1], symmetric around zero, and bounded.

(4): bn → 0 and n−1/2b−2n e6µb
−γ
n log(b−1n )−1/2 → 0 as n→∞.

(5): V ar(r(X,Y )) <∞, where

r(X,Y ) =
∞∑
h=0

µh

ihγCh!
{G(hγ+1)(X)− Y f (hγ+1)(X)}.

Many of the same comments as for the ordinary smooth case apply to this setting. However,

the second part of Assumption (2) is more restrictive and appears to be necessary. As discussed

in Meister (2009), one can show that the class of infinitely differentiable functions still contains

a comprehensive nonparametric class of densities’ (pp. 44), including, of course, Gaussian and

mixtures of Gaussians. For the regression function, all polynomials satisfy this restriction, as

well as circular functions, exponentials, and products or sums of such smooth functions. As-

sumption (2) is the conventional supersmooth assumption for the measurement error, with the

non-standard additional constraint on γ being even. Although this rules out the Cauchy dis-

tribution (where γ = 1), importantly, this still contains the canonical Gaussian distribution as
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well as Gaussian mixtures. van Es and Gugushvili (2008) imposed a similar constraint, although

they restrict themselves further to γ = 2. Assumption (3) requires an infinite-order kernel func-

tion; these are often required in supersmooth deconvolution problems. Meister (2009) discussed

their construction and noted that the commonly used sinc kernel, K(x) = sin(x)
πx , satisfies the

requirements. Assumption (4) requires the bandwidth to decay to zero at a logarithmic rate. In

particular, because we are using an infinite-order kernel, we can ignore concerns of the bias from

the nonparametric estimator and choose a bandwidth of at least bn = O
(

(13µ)1/γ log(n)−1/γ
)

to satisfy this assumption.

Based on these assumptions, our main result is as follows.

Theorem. Suppose Assumption OS or SS holds true. Then

√
n(θ̂ − θ) d→ N(0, 4V ar(r(X,Y ))).

The most important aspect of this result is the
√
n convergence of the estimator. Before this

result, Powell, Stock and Stoker (1989) showed the same rate of convergence in the case of cor-

rectly measured regressors, and Fan (1995) confirmed this result for ordinary smooth error in the

regressors when the error distribution is known. The above theorem shows that the convergence

rate of these average derivative estimators does not change when measurement error is intro-

duced. In particular, it does not change in the severely ill-posed case of supersmooth error, nor

does it change when the measurement error distribution is estimated. Interestingly, as outlined

in the Appendix, the asymptotic variance depends on the symmetry of the measurement error

density. When the measurement error is symmetric around zero, remainder terms associated

with the estimation error of the measurement error characteristic function vanish, and the as-

ymptotic variance is the same as if the measurement error distribution is known; however, this

is not the case for asymmetric distributions.

In pointwise estimation and testing problems,
√
n convergence is typically not attained. For

example, Holzman and Boysen (2006) showed that the integrated squared error of deconvolu-

tion estimators has a fundamentally different asymptotic distribution in the face of supersmooth

measurement error in comparison to the case of ordinary smooth error. While Fan (1991) showed

that deconvolution estimators under supersmooth contamination attain a log(n) rate of conver-

gence whereas ordinary smooth measurement error results in a polynomial rate of convergence

in n. In this paper, we show that this discontinuity in the properties of deconvolution estimators

facing supersmooth or ordinary smooth error does not continue to hold for averaged estimators.
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As a by-product of the proof, we also establish the asymptotic distribution of Fan’s (1995)

estimator for θ when the distribution of ε is known and supersmooth.

Corollary. Suppose Assumption SS holds true without the repeated measurement Xr. Then the

estimator θ̃ defined by replacing K̂ in (5) with K satisfies

√
n(θ̃ − θ) d→ N(0, 4V ar(r(X,Y ))).
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Appendix A. Proof of theorem (supersmooth case)

Since the arguments are similar, we first present a proof for the supersmooth case. In Section

C, we provide a proof for the ordinary smooth case by explaining in detail the parts of the proof

that differ to the supersmooth setting.

Let ξ̂(t) = 1
n

∑n
l=1 ξl(t) for ξl(t) = cos(t(Xl − Xr

l )), and ξ(t) = |f ftε (t)|2. Note that f̂ ftε (t) =

|ξ̂(t)|1/2 and fε(t) = |ξ(t)|1/2. By expansions around ξ̂(t/bn) = ξ(t/bn), we obtain

K̂(x) = K(x) +A1(x) +R1(x),

K̂′(x) = K′(x) +A2(x) +R2(x),

where

A1(x) = − 1

4π

ˆ
e−itxK ft(t)

{
ξ̂(t/bn)− ξ(t/bn)

|ξ(t/bn)|3/2

}
dt,

A2(x) =
i

4π

ˆ
e−itxtK ft(t)

{
ξ̂(t/bn)− ξ(t/bn)

|ξ(t/bn)|3/2

}
dt,

R1(x) = − 1

4π

ˆ
e−itxK ft(t)

{
1

|ξ̃(t/bn)|1/2
− 1

|ξ(t/bn)|1/2

}{
ξ̂(t/bn)− ξ(t/bn)

|ξ(t/bn)|

}
dt

− 1

2π

ˆ
e−itxK ft(t)

{
1

|ξ̂(t/bn)|1/2
− 1

|ξ(t/bn)|1/2

}{
|ξ̂(t/bn)|1/2 − |ξ(t/bn)|1/2

|ξ(t/bn)|1/2

}
dt,

R2(x) =
i

4π

ˆ
e−itxtK ft(t)

{
1

|ξ̃(t/bn)|1/2
− 1

|ξ(t/bn)|1/2

}{
ξ̂(t/bn)− ξ(t/bn)

|ξ(t/bn)|

}
dt

+
i

2π

ˆ
e−itxtK ft(t)

{
1

|ξ̂(t/bn)|1/2
− 1

|ξ(t/bn)|1/2

}{
|ξ̂(t/bn)|1/2 − |ξ(t/bn)|1/2

|ξ(t/bn)|1/2

}
dt,

for some ξ̃(t/bn) ∈ (ξ̂(t/bn), ξ(t/bn)). Thus, we can decompose

θ̂ = − 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
K̂′
(
x−Xj

bn

)
K̂
(
x−Xk

bn

)
dx = S + T1 + · · ·+ T6, (6)

where

S = − 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
K′
(
x−Xj

bn

)
K
(
x−Xk

bn

)
dx

− 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
K′
(
x−Xj

bn

)
A1

(
x−Xk

bn

)
dx

− 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
A2

(
x−Xj

bn

)
K
(
x−Xk

bn

)
dx,
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T1 = − 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
K′
(
x−Xj

bn

)
R1

(
x−Xk

bn

)
dx,

T2 = − 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
R2

(
x−Xj

bn

)
K
(
x−Xk

bn

)
dx,

T3 = − 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
A2

(
x−Xj

bn

)
A1

(
x−Xk

bn

)
dx,

T4 = − 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
R2

(
x−Xj

bn

)
A1

(
x−Xk

bn

)
dx,

T5 = − 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
A2

(
x−Xj

bn

)
R1

(
x−Xk

bn

)
dx,

T6 = − 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
R2

(
x−Xj

bn

)
R1

(
x−Xk

bn

)
dx.

First, we show that T1, . . . , T6 are asymptotically negligible, i.e.,

T1, . . . , T6 = op(n
−1/2). (7)

For T2, we decompose T2 = T2,1 + T2,2, where

T2,1 = − i

2πn2b3n

n∑
j=1

n∑
k=1

Yk

ˆ ˆ  e
−it

(
x−Xj
bn

)
tK ft(t){|ξ̃(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1{ξ̂(t/bn)− ξ(t/bn)}

 dtK(x−Xk

bn

)
dx,

T2,2 = − i

πn2b3n

n∑
j=1

n∑
k=1

Yk

ˆ ˆ  e
−it

(
x−Xj
bn

)
tK ft(t){|ξ̂(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1/2{|ξ̂(t/bn)|1/2 − |ξ(t/bn)|1/2}

 dtK(x−Xk

bn

)
dx.

For T2,1, we have

|n1/2T2,1| =

∣∣∣∣∣∣ 1

2πn3/2b2n

n∑
j=1

n∑
k=1

Yk

ˆ  e
it
(
Xj−Xk
bn

)
tK ft(t)K ft(−t){|ξ̃(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−3/2{ξ̂(t/bn)− ξ(t/bn)}

 dt

∣∣∣∣∣∣
= Op

(
n1/2b−2n sup

|t|≤b−1
n

∣∣∣{|ξ̃(t)|−1/2 − |ξ(t)|−1/2}|ξ(t)|−3/2{ξ̂(t)− ξ(t)}∣∣∣)

= Op

(
n1/2b−2n e4µb

−γ
n %2n

)
= op(1),

where the first equality follows from a change of variables, the second equality follows from∣∣∣∣eit(Xj−Xkbn

)∣∣∣∣ = 1, 1
n

∑n
k=1 |Yk| = Op(1), and

´
|tK ft(t)K ft(−t)| < ∞ (by Assumption SS (3)),

the third equality follows from the definition of ξ̃(t), Assumption SS (2), and Lemma 1, and

11



the last equality follows from Assumption SS (4). A similar argument yields T2,2 = op(n
−1/2),

and thus T2 = op(n
−1/2). Also, using similar arguments as for T2, gives T1 = op(n

−1/2) and

T3 = op(n
−1/2).

For T4, we decompose T4 = T4,1 + T4,2, where

T4,1 =
i

8π2n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ

´
 e

−it
(
x−Xj
bn

)
tK ft(t){|ξ̃(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1
{
ξ̂(t/bn)− ξ(t/bn)

}
 dt

×
´
e
−it

(
x−Xk
bn

)
K ft(t)|ξ(t/bn)|−3/2{ξ̂(t/bn)− ξ(t/bn)}dt

 dx,

T4,2 =
i

4π2n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ

´
 e

−it
(
x−Xj
bn

)
tK ft(t){|ξ̂(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1/2{|ξ̂(t/bn)|1/2 − |ξ(t/bn)|1/2}

 dt

×
´
e
−it

(
x−Xk
bn

)
K ft(t)|ξ(t/bn)|−3/2{ξ̂(t/bn)− ξ(t/bn)}dt

 dx.
For T4,1, we have

|n1/2T4,1| = Op

(
n1/2b−2n sup

|t|≤b−1
n

∣∣∣{|ξ̃(t)|−1/2 − |ξ(t)|−1/2}|ξ(t)|−5/2{ξ̂(t)− ξ(t)}2∣∣∣)

= Op

(
n1/2b−2n e5µb

−γ
n %3n

)
= op(1),

where the first equality follows from a change of variables,
∣∣∣∣eit(Xj−Xkbn

)∣∣∣∣ = 1, 1
n

∑n
k=1 |Yk| =

Op(1), and
´
|tK ft(t)K ft(−t)|dt < ∞ (by Assumption SS (3)), the second equality follows from

the definition of ξ̃(t), Assumption SS (2), and Lemma 1, and the last equality follows from

Assumption SS (4). A similar argument yields T4,2 = op(n
−1/2), and thus T4 = op(n

−1/2). Also,

similar arguments as used for T4 imply T5 = op(n
−1/2).

12



For T6, we decompose T6 = T6,1 + T6,2 + T6,3 + T6,4, where

T6,1 =
i

8π2n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ

´
 e

−it
(
x−Xj
bn

)
tK ft(t){|ξ̃(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1{ξ̂(t/bn)− ξ(t/bn)}

 dt

×
´
 e

−it
(
x−Xk
bn

)
K ft(t){|ξ̃(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1{ξ̂(t/bn)− ξ(t/bn)}

 dt


dx

T6,2 =
i

4π2n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ

´
 e

−it
(
x−Xj
bn

)
tK ft(t){|ξ̂(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1/2{|ξ̂(t/bn)|1/2 − |ξ(t/bn)|1/2}

 dt

×
´
 e

−it
(
x−Xk
bn

)
K ft(t){|ξ̃(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

|ξ(t/bn)|−1{ξ̂(t/bn)− ξ(t/bn)}

 dt


dx

T6,3 =
i

4π2n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ

´
 e

−it
(
x−Xj
bn

)
tK ft(t){|ξ̃(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1{ξ̂(t/bn)− ξ(t/bn)}

 dt

×
´
 e

−it
(
x−Xk
bn

)
K ft(t){|ξ̂(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1/2{|ξ̂(t/bn)|1/2 − |ξ(t/bn)|1/2}

 dt


dx

T6,4 =
i

2π2n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ

´
 e

−it
(
x−Xj
bn

)
tK ft(t){|ξ̂(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1/2{|ξ̂(t/bn)|1/2 − |ξ(t/bn)|1/2}

 dt

×
´
 e

−it
(
x−Xk
bn

)
K ft(t){|ξ̂(t/bn)|−1/2 − |ξ(t/bn)|−1/2}

×|ξ(t/bn)|−1/2{|ξ̂(t/bn)|1/2 − |ξ(t/bn)|1/2}

 dt


dx

Since T6,2 and T6,3 are cross-product terms, it is enough to focus on T6,1 and T6,4. For T6,1, we

have

|n1/2T6,1| = Op

(
n1/2b−2n sup

|t|≤b−1
n

∣∣∣{|ξ̃(t)|−1/2 − |ξ(t)|−1/2}2|ξ(t)|−2{ξ̂(t)− ξ(t)}2∣∣∣)

= Op

(
n1/2b−2n e6µb

−γ
n %4n

)
= op(1),

where the first equality follows from a change of variables,
∣∣∣∣eit(Xj−Xkbn

)∣∣∣∣ = 1, 1
n

∑n
k=1 |Yk| =

Op(1), and
´
|tK ft(t)K ft(−t)|dt < ∞ (by Assumption SS (3)), the second equality follows from

the definition of ξ̃(t), Assumption SS (2), and Lemma 1, and the last equality follows from

Assumption SS (4). A similar argument yields T6,4 = op(n
−1/2), and thus T6 = op(n

−1/2).

Combining these results, we obtain (7).

We now consider the term S in (6). Let dj = (Yj , Xj , ξj) and

pn(dj , dk, dl) = qn(dj , dk, dl) + qn(dj , dl, dk) + qn(dk, dj , dl) + qn(dk, dl, dj) + qn(dl, dj , dk) + qn(dl, dk, dj),
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where

qn(dj , dk, dl) = − 1
3b3n


´
K′
(
x−Xj
bn

)
YkK

(
x−Xk
bn

)
dx

+ i
4π

´ {´
e
−it

(
x−Xj
bn

)
YkK

(
x−Xk
bn

)
dx

}{
ξl(t/bn)−E[ξl(t/bn)]

|ξ(t/bn)|3/2

}
tK ft(t)dt

− 1
4π

´ {´
K′
(
x−Xj
bn

)
Yke
−it

(
x−Xk
bn

)
dx

}{
ξl(t/bn)−E[ξl(t/bn)]

|ξ(t/bn)|3/2

}
K ft(t)dt

 .

We then decompose S = n−2(n− 1)(n− 2)U + S1 + S2 + S3 + S4, where

U =

(
n

3

)−1 n∑
j=1

n∑
k=j+1

n∑
l=k+1

pn(dj , dk, dl),

S1 =
6

n3

n∑
j=1

n∑
k=j+1

[qn(dj , dj , dk) + qn(dk, dk, dj)], S2 =
6

n3

n∑
j=1

n∑
k=j+1

[qn(dj , dk, dj) + qn(dk, dj , dk)],

S3 =
6

n3

n∑
j=1

n∑
k=j+1

[qn(dj , dk, dk) + qn(dk, dj , dj)], S4 =
6

n3

n∑
j=1

qn(dj , dj , dj).

We show that

S1, . . . , S4 = op(n
−1/2), (8)

in the following way. For S1, decompose

|n1/2S1|

= O(n−5/2b−3n )



∣∣∣∑n
j=1

∑n
k=j+1

´
K′
(
x−Xj
bn

)
YkK

(
x−Xk
bn

)
dx
∣∣∣

+

∣∣∣∣∑n
j=1

∑n
k=j+1

i
4π

´ {´
e
−it

(
x−Xj
bn

)
YkK

(
x−Xk
bn

)
dx

}{
ξl(t/bn)−E[ξl(t/bn)]

|ξ(t/bn)|3/2

}
tK ft(t)dt

∣∣∣∣
+

∣∣∣∣∑n
j=1

∑n
k=j+1

1
4π

´ {´
K′
(
x−Xj
bn

)
Yke
−it

(
x−Xk
bn

)
dx

}{
ξl(t/bn)−E[ξl(t/bn)]

|ξ(t/bn)|3/2

}
K ft(t)dt

∣∣∣∣


≡ S1,1 + S1,2 + S1,3.

To bound S1,1, we write

S1,1 = O(n−5/2b−2n )

∣∣∣∣∣∣
n∑
j=1

n∑
k=j+1

Yk

{ˆ
1

bn
e−i(s+t)x/bndx

}ˆ ˆ
ise

i
(
tXk+sXj

bn

)
K ft(s)

f ftε (s/bn)

K ft(t)

f ftε (t/bn)
dsdt

∣∣∣∣∣∣
= Op

(
n−1/2b−2n e2µb

−γ
n

)
= op(1),

where the second equality follows from a change of variables,
∣∣∣∣ei( tXk+sXjbn

)∣∣∣∣ = 1, 1
n

∑n
k=1 |Yk| =

Op(1), and Assumption SS (3), and the last equality follows from Assumption SS (4). For S1,2,

a similar argument as used for T3 can be used to show

S1,2 = Op

(
n−1/2b−2n e4µb

−γ
n %n

)
= op(1).
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Furthermore, the same arguments can be used to show S2, S3, S4 = op(n
−1/2).

We now analyze the main term U . Let rn(dj) = E[pn(dj , dk, dl)|dj ] and Û = θ+ 3
n

∑n
j=1{rn(dj)−

E[rn(dj)]}. By Ahn and Powell (1993, Lemma A.3), if

E[pn(dj , dk, dl)
2] = o(n), (9)

then it holds

U = θ +
3

n

n∑
j=1

{rn(dj)− E[rn(dj)]}+ op(n
−1/2). (10)

For (9), note that

E[pn(dj , dk, dl)
2]

≤ 1

3b6n
E

[{ˆ
K′
(
x−Xj

bn

)
YkK

(
x−Xk

bn

)
dx

}2
]

+
1

3b6n
E

[{
i

4π

ˆ {ˆ
e
−it

(
x−Xj
bn

)
YkK

(
x−Xk

bn

)
dx

}{
ξl(t/bn)− E[ξl(t/bn)]

|ξ(t/bn)|3/2

}
tK ft(t)dt

}2
]

+
1

3b6n
E

[{
1

4π

ˆ {ˆ
K′
(
x−Xj

bn

)
Yke
−it

(
x−Xk
bn

)
dx

}{
ξl(t/bn)− E[ξl(t/bn)]

|ξ(t/bn)|3/2

}
K ft(t)dt

}2
]

≡ P1 + P2 + P3.

For P1,

P1 =
1

3b4n

ˆ ˆ ˆ ˆ {ˆ
K′(z)K

(
z +

sj + tj − sk − tk
bn

)
dz

}2

E[Y 2|X∗ = sk]

×f(sk)f(sj)fv(tk)fv(tj)dskdsjdtkdtj

=
1

12π2b4n

ˆ ˆ {ˆ ˆ
e
−i(w1+w2)

(
sj−sk
bn

)
E[Y 2|X∗ = sk]f(sk)f(sj)dskdsj

}
×w1w2|K ft(w1)|2|K ft(w2)|2

|f ftε (w1/bn)|2|f ftε (w2/bn)|2
dw1dw2

= O
(
b−4n e4µb

−γ
n

)
,

where the first equality follows by the change of variables z =
x−sj−tj

bn
, the second equality follows

by Lemma 2, and the penultimate equality follows from Assumption SS (2). Thus Assumption

SS (4) guarantees P1 = o(n).

For P2, Lemma 2 implies

ˆ {
i

4π

ˆ
te−itz

K ft(t)

f ftε (t/bn)3
{ξl(t/bn)− E[ξl(t/bn)]}dt

}
K(z − c)dz

=
i

4π

ˆ
we−iwc|K ft(w)|2

|f ftε (w/bn)|4
{ξl(w/bn)− E[ξl(w/bn)]}dw.
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Then we can write

P2 =
1

3b6n
E

[
Y 2
k

{ˆ {
i

4π

ˆ
te−itz

K ft(t)

f ftε (t/bn)3
{ξl(t/bn)− E[ξl(t/bn)]}dt

}
K
(
x−Xk

bn

)
dx

}2
]

=
1

3b6n

ˆ
· · ·
ˆ
E


 i

4π

ˆ ˆ  te
−it

(
x−sj−uj

bn

)
K ft(t)

×f ftε (t/bn)−3{ξl(t/bn)− E[ξl(t/bn)]}

 dtK
(
x− sk − uk

bn

)
dx


2


×E[Y 2|X∗ = sk]f(sk)f(sj)fv(uk)fv(uj)dskdsjdukduj

=
1

12π2b4n

ˆ ˆ {ˆ ˆ
e
−i(w1+w2)

(
sj−sk
bn

)
E[Y 2|X∗ = sk]f(sk)f(sj)dskdsj

}
×w1w2|K ft(w1)|2|K ft(w2)|2

|f ftε (w1/bn)|6|f ftε (w2/bn)|6
E[{ξl(w1/bn)− E[ξl(w1/bn)]}{ξl(w2/bn)− E[ξl(w2/bn)]}]dw1dw2

= O
(
b−4n e12µb

−γ
n log(b−1n )−1

)
= o(n),

where the third equality follows from a similar argument as for P1 combined with Kato and

Sasaki (2018, Lemma 4) to bound {ξl(w1/bn)−E[ξl(w1/bn)}, and the last equality follows from

Assumption SS (4). The order of P3 can be shown in an almost identical manner, and we obtain

(9).

Combining (6), (7), (8), (10), and a direct calculation to characterize rn(dj) = E[pn(dj , dk, dl)|dj ],

it follows

√
n(θ̂ − θ) =

3√
n

n∑
j=1

{rn(dj)− E[rn(dj)]}+ op(1),

=
2√
nb3n

n∑
j=1

{ηj − E[ηj ]} −
1

2π
√
nb3n

n∑
j=1

ˆ
∆(t)

{
ξj(t/bn)− E[ξj(t/bn)]

|ξ(t/bn)|3/2

}
K ft(t)dt+ op(1), (11)

where

ηj =

ˆ
K
(
x−Xj

bn

){
E

[
Y K ′

(
x−X∗

bn

)]
− YjE

[
K ′
(
x−X∗

bn

)]}
dx,

∆(t) =

ˆ ˆ
itE

[
e
−it

(
x−X
bn

)]
E

[
Y K

(
x−X∗

bn

)]
− E

[
K ′
(
x−X∗

bn

)]
E

[
Y e
−it

(
x−X
bn

)]
dx.
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For the first term in (11), note that

ηj
b3n

=
1

b2n

ˆ
K(z){q1(Xj + bnz)− Yjq2(Xj + bnz)}dz

=
+∞∑
l=0

(−1)lbln
l!

ˆ ˆ
K(z)K(w)(w − z)ldwdz{G(l+1)(Xj)− Yjf (l+1)(Xj)}

=
+∞∑
l=0

(−1)lbln
l!

ˆ
K(z)zldz{G(l+1)(Xj)− Yjf (l+1)(Xj)}

=
∞∑
h=0

µh

ihγCh!
{G(hγ+1)(Xj)− Yjf (hγ+1)(Xj)},

where the first equality follows by q1(x) = E
[
Y K ′

(
x−X∗

bn

)]
and q2(x) = E

[
K ′
(
x−X∗

bn

)]
and

the change of variable z =
x−Xj
bn

, the second equality follows by Lemma 4, the third equality

follows from Assumption SS (3), and the last equality follows by Lemma 5.

Let Ξj(t) =
ξj(t/bn)−E[ξj(t/bn)]

|ξ(t/bn)| . For the second term in (11), we have

ˆ
∆(t)

{
ξj(t/bn)− E[ξj(t/bn)]

|ξ(t/bn)|3/2

}
K ft(t)dt

= i

ˆ
tf ft(t/bn)

{ˆ ˆ
e−itx/bnK

(
x− x∗

bn

)
G(x∗)dxdx∗

}
Ξj(t)K

ft(t)dt

−
ˆ
Gft(t/bn)

{ˆ ˆ
e−itx/bnK ′

(
x− x∗

bn

)
f(x∗)dxdx∗

}
Ξj(t)K

ft(t)dt

= i

ˆ
tf ft(t/bn)

{ˆ ˆ
e−itx/bnK

(
x− x∗

bn

)
G(x∗)dxdx∗

}
Ξj(t)K

ft(t)dt

−i

ˆ
tGft(t/bn)

{ˆ ˆ
e−itx/bnK

(
x− x∗

bn

)
f(x∗)dxdx∗

}
Ξj(t)K

ft(t)dt

= ibn

ˆ
tK ft(t)f ft(t/bn)K ft(−t)Gft(−t/bn)Ξj(t)dt

−ibn

ˆ
tK ft(−t)f ft(−t/bn)K ft(t)Gft(t/bn)Ξj(t)dt

= 0,

where the first equality follows from the definition of ∆(t), the second equality follows by inte-

gration by parts, that is
´
e−itx/bnK ′

(
x−x∗
bn

)
dx = it

´
e−itx/bnK

(
x−x∗
bn

)
dx, the third equality

follows from a change of variables, and the last equality follows from symmetry of ξj(t) and ξ(t)

(which implies symmetry of Ξj(t)).

Therefore, the conclusion follows by the central limit theorem.
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Appendix B. Lemmas

Lemma 1. [Kato and Sasaki, 2018, Lemma 4] Under Assumption SS,

sup
|t|≤b−1

n

|f̂ ftε (t)− f ftε (t)| = Op(%n),

where %n = n−1/2 log(b−1n )1/2.

Lemma 2. Under Assumption SS (1) and (3), it holds

ˆ
K′(z)K(z + c)dz =

i

2π

ˆ
we−iwc|K ft(w)|2

|f ftε (w/bn)|2
dw,

for any constant c.

Proof. Observe that

ˆ
K′(z)K(z − c)dz =

ˆ (
−i

2π

ˆ
w1e

−iw1z K ft(w1)

f ftε (w1/bn)
dw1

)(
1

2π

ˆ
e−iw2z e

−iw2cK ft(w2)

f ftε (w2/bn)
dw2

)
dz

=
−i

2π

ˆ ˆ (
1

2π

ˆ
e−i(w1+w2)zdz

)
w1e

−iw2cK ft(w1)K
ft(w2)

f ftε (w1/bn)f ftε (w2/bn)
dw1dw2

=
i

2π

ˆ
we−iwc|K ft(w)|2

|f ftε (w/bn)|2
dw,

where the last equality follows by
´
δ(w − b)f(w)dw = f(b) with Dirac delta function δ(w) =

1
2π

´
e−iwxdx. �

Lemma 3. Under Assumption SS (1)-(3), it holds

|
ˆ

K′(z)K(z)dz| = O(e2µb
−γ
n ).

Proof. By Lemma 2, we have

|
ˆ

K′(z)K(z)dz| = 1

2π

∣∣∣∣ˆ w|K ft(w)|2

|f ftε (w/bn)|2
dw

∣∣∣∣ = O

( inf
|w|≤b−1

n

|f ftε (w)|

)−1 ,

where the second equality follows from compactness of support of K ft (Assumption SS (3)). The

conclusion follows by Assumption SS (2). �
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Lemma 4. Under Assumption SS (1) and (3), it holds

E

[
YkK

′
(
z +

Xj −X∗k
bn

)∣∣∣∣Xj

]
=

+∞∑
l=0

(−1)lbl+2
n G(l+1)(Xj)

l!

ˆ
K(w)(w − z)ldw,

E

[
K ′
(
z +

Xj −X∗k
bn

)∣∣∣∣Xj

]
=

+∞∑
l=0

(−1)lbl+2
n f (l+1)(Xj)

l!

ˆ
K(w)(w − z)ldw.

Proof. Since G = gf is infinitely differentiable (Assumption SS (1)), we have

E

[
YkK

′
(
z +

Xj −X∗k
bn

)∣∣∣∣Xj

]
=

ˆ
G(s)K ′

(
z +

Xj − s
bn

)
ds

= −bn
ˆ
G(Xj − bn(w − z))K ′(w)dw = b2n

ˆ
K(w)G′(Xj − bn(w − z))dw

=
+∞∑
l=0

(−1)lbl+2
n G(l+1)(Xj)

l!

ˆ
K(w)(w − z)ldw,

where the second equality follows by the change of variable w = z +
Xj−s
bn

, the third equality

follows by integration by parts, the fourth equality follows by an expansion of G′(Xj−bn(w−z))

around Xj . The second statement can be proved by similar arguments. �

Lemma 5. Under Assumptions SS (1)-(3), it holds

ˆ
K(z)zpdz =


µp/γp!

bpnipC(p/γ)!
for p = hγ with h = 0, 1, . . . ,

0 for other positive integers.

Proof. First, note that

K(z) =
1

2πC

ˆ
e−itzeµ|t/bn|

γ
K ft(|t|)dt =

+∞∑
h=0

µh

Ch!bhγn

{
1

2π

ˆ
e−itz|t|hγK ft(|t|)dt

}

=

+∞∑
h=0

µh

Ch!(−ibn)hγ

{
1

2π

ˆ
e−itz(K(hγ))ft(|t|)dt

}

=
+∞∑
h=0

µh

Ch!(−ian)hγ

{
1

2π

ˆ
e−itz(K(hγ))ft(t)dt

}
=

+∞∑
h=0

µh

Ch!(−ian)hγ
K(hγ)(z),

where the first equality follows by Assumption SS (2) and K ft(t) = K ft(−t), the second equality

follows by eu =
∑+∞

h=0
uh

h! , the third equality follows by (K(l))ft(t) = (−it)lK ft(t) (see, e.g.,

Lemma A.6 of Meister, 2009), the fourth equality follows by (K(hγ))ft(−t) = (K(hγ))ft(t), which

is from K ft(t) = K ft(−t), (K(l))ft(t) = (−it)lK ft(t), and the assumption that γ is even. Thus,

we have

ˆ
K(z)zpdz =

+∞∑
h=0

µh

Ch!(−ibn)hγ

ˆ
zpK(hγ)(z)dz,
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and the conclusion follows by Assumption SS (3) and using the integration by parts. �

Appendix C. Proof of theorem (ordinary smooth case)

The steps in this proof are the same as that for the supersmooth case, as such, we only explain

parts of the proof that differ. Furthermore, in the proof of the supersmooth case we endevour to

obtain expressions in terms of f ftε wherever possible. This allows us to skip to this final step in

each asymptotic argument, and requires us only to input the relevant form for f ftε . This proof

also leverages much of the work from Fan (1995) but extends this by allowing for an estimated

measurement error density.

As in the proof of the supersmooth case, we have

θ̂ = − 2

n2b3n

n∑
j=1

n∑
k=1

Yk

ˆ
K̂′
(
x−Xj

bn

)
K̂
(
x−Xk

bn

)
dx = S + T1 + · · ·+ T6,

where S, T1, . . . , T6 are defined in Section A. We were able to show that

|n1/2T2| = O

n1/2b−2n
(

sup
|t|≤b−1

n

|f̂ ftε (t)− f ftε (t)|

)2(
inf
|t|≤b−1

n

|f ftε (t)|4
)−1 .

Then we have T2 = op(n
−1/2) by Lemma 1 and Assumption OS (2). The rest of T1, T3, . . . T6 are

shown to be of order op(n−1/2) in a similar way.

Again, decompose S = n−2(n − 1)(n − 2)U + S1 + · · · + S4, where all objects are defined in

the proof of the supersmooth case. We can show the asymptotic negligibility of S1, . . . , S4 as

follows. We again decompose |n1/2S1| = S1,1 + S1,2 + S1,3. To bound S1,1, we write

S1,1 = Op

n−1/2b−2n
(

inf
|t|≤b−1

n

|f ftε (t)|

)−2 = op(1).

where the second equality follows from Assumption OS (2) and (4). Recall from the proof of the

supersmooth case

S1,2 = Op

n−1/2b−2n
(

sup
|t|≤b−1

n

|f̂ ftε (t)− f ftε (t)|

)(
inf
|t|≤b−1

n

|f ftε (t)|4
)−1 = op(1).

The asymptotic negligibility of S1,3 can be shown in an almost identical way. The same arguments

can also be used to show S2, S3, S4 = op(n
−1/2).

As in the supersmooth case, we also need to show E[pn(dj , dk, dl)
2] = o(n) in order to write

U = θ + 3
n

∑n
j=1{rn(dj) − E[rn(dj)]} + op(1). We begin by decomposing E[pn(dj , dk, dl)

2] =
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P1 + P2 + P3, where these objects are defined in the supersmooth proof. For P1,

P1 = O

b−4n
(

inf
|w|≤b−1

n

|f ftε (w)|2
)−2 = o(n),

by Assumption OS (2) and (4). For P2, we can write

P2 = O

b−4n
(

inf
|w|≤b−1

n

|f ftε (w)|6
)−2

log(bn)−2

 = o(n),

by Assumption OS (2) and (4). The order of P3 can be shown in an almost identical manner.

Then, it follows

√
n(θ̂ − θ) =

3√
n

n∑
j=1

{rn(dj)− E[rn(dj)]}+ op(1),

and the remainder of the proof for the supersmooth case applies as it does not depend on the

form of f ftε .
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