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Abstract. We propose a semiparametric estimator for varying coefficient models when the

regressors in the nonparametric component are measured with error. Varying coefficient models

are an extension of other popular semiparametric models, including partially linear and non-

parametric additive models, and deliver an attractive solution to the curse-of-dimensionality.

We use deconvolution kernel estimation in a two-step procedure and show that the estimator

is consistent and asymptotically normally distributed. We do not assume that we know the

distribution of the measurement error a priori, nor do we assume that the error is symmetri-

cally distributed. Instead, we suppose we have access to a repeated measurement of the noisy

regressor and use the approach of Li and Vuong (1998) based on Kotlarski’s (1967) identity. We

show that the convergence rate of the estimator is significantly reduced when the distribution

of the measurement error is assumed unknown and possibly asymmetric. Finally, we study the

small sample behaviour of our estimator in a simulation study.

1. Introduction

Varying coefficient models, introduced by Hastie and Tibshirani (1993), represent a very gen-
eral class of semiparametric specification. In its standard form, the varying coefficient model is
written as

Y = β0(Z) +X1β1(Z) +X2β2(Z) + · · ·+Xkβk(Z) + U, E[U |X,Z] = 0,

where Y is a scalar dependent variable, X = (X1, . . . , Xk)
′ and Z are covariates, (β0(·), . . . , βk(·))

are unknown functions of Z, and U is an error term. X and Z need not necessarily be mutually
exclusive sets of variables, and may even coincide. This specification allows the effect of each
Xj on Y to depend on Z in a nonparametric way. As well as nesting nonparametric additive
models (Hastie and Tibshirani, 1993), the varying coefficient model is also a generalisation of
the partially linear model (Robinson, 1988).

In this paper, we propose a deconvolution based estimator for the varying coefficient model
when the covariates are mismeasured. In particular, we suppose that a subset of the covariates, Z,
in the nonparametric component is contaminated with classical measurement error. We show that
the estimator is consistent and asymptotically normally distributed under both ordinary smooth
and supersmooth errors. We do not suppose that we know the distribution of the measurement
error a priori but assume that we have access to an independent repeated measurement of
the contaminated regressors. Furthermore, we do not assume that the measurement error is
symmetrically distributed.

The authors acknowledge financial supports from the SMU Dedman College Research Fund (12-412268) (Dong),
the ERC Consolidator Grant (SNP 615882) (Otsu), and the Aarhus University Research Fund (AUFF-26852)
(Taylor).
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Although seemingly innocuous, allowing the error distribution to be asymmetric poses consid-
erable technical challenges (see, for example, Li and Vuong, 1998, Bonhomme and Robin, 2010,
and Kurisu and Otsu, 2019). Indeed, Delaigle, Hall and Meister (2008) showed that nonpara-
metric deconvolution estimators with an unknown - but symmetric - measurement error density
can obtain the same convergence rate as the corresponding estimator with a known error den-
sity. In contrast, when the symmetry assumption is relaxed, the noise for estimating the error
characteristic function dominates the asymptotic properties of the final estimator and results in
slower convergence rates than its known (or symmetric) estimator counterparts.

The plethora of recent papers studying the properties of varying coefficient models highlights
their growing popularity (for example, Ma and Song, 2015, He, Lian, Ma and Huang, 2018,
and Yao, Zhang and Kumbhakar, 2019). However, these models are not only of theoretical
interest; they are put to great use in many applied settings (for example, Mamuneas, Savvides
and Stengos, 2006, Heshmati, Kumbhakar and Sun, 2014, and Feng, Gao, Peng and Zhang,
2017, among many others). For empirical work, one of the biggest appeals is their similarity to
conventional linear regression models, which also facilitates a straightforward interpretation of
the estimation results.

From a more theoretical perspective, varying coefficient models mitigate the effects of the
‘curse-of-dimensionality’. Typically, a single covariate is used in the nonparametric component;
for example, one may be interested in how an effect changes over the lifecycle of an individual. In
this case, estimators of these effects converge at the rate

√
nbn, where bn refers to the bandwidth

parameter. This is in contrast to a fully nonparametric model where the convergence rate is
√
nbdn

where d is the dimension of the full set of regressors. Moreover, in the presence of measurement
error, the curse-of-dimensionality is, in general, exacerbated. Hence, the benefits of using varying
coefficient models are increased when working with contaminated data.

There is a rich literature on estimating varying coefficient models starting with the seminal
papers of Cleveland, Grosse and Shyu (1991) and Hastie and Tibshirani (1993). These models
have been extended in many different directions, including allowing for measurement error in
the covariates. In many real-world applications, data are often error-prone. This may be the
result of poor data collection, imprecise measurement instruments, or imperfection in survey
responses. You and Chen (2006) considered the setting where one of the coefficients is constant,
and its associated covariate is contaminated with error from a known distribution. Zhou and
Liang (2009) extended this model to allow for an unknown error distribution but where auxiliary
information is available to estimate this density. In both of these cases,

√
n convergence is

obtained for this finite-dimensional parameter using profile least squares estimation. Li and
Greene (2008) suppose that the error-prone covariate has a varying coefficient which depends
on correctly measured regressors. They use locally corrected score equations to estimate the
nonparametric functions and show that the convergence rate is not affected by the measurement
error.

We depart from the previous literature by considering measurement error in the nonparametric
component. This poses very different problems to those encountered in the aforementioned
papers. In particular, we require deconvolution techniques to recover the distribution of the
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latent covariates needed to estimate the smooth coefficient functions. We show that in contrast
to settings where the mismeasured covariates enter the model linearly, the measurement error
impacts the rate of convergence of our estimator. Furthermore, the rate of convergence depends
sensitively on the degree of smoothness of the measurement error density.

The paper proceeds as follows. In Section 2, we outline the model setting, discuss our estimator
when the density of the measurement error is assumed to be known, and present the asymptotic
properties of the estimator. In Section 3, we relax the assumption of a known error distribution
and detail the resulting asymptotic properties under this more general setting. Section 4 presents
the small sample properties of our estimator in a simulation study. Finally, Section 5 concludes.

2. case of known measurement error distribution

2.1. Setup and estimator. Consider the varying coefficient model

Y = X ′β(W ∗) + U, E[U |X,W ∗] = 0, (2.1)

where X = (X1, . . . , Xk)
′ ∈ Rk is a vector of observable covariates, W ∗ ∈ R is an error-free

covariate, and β(·) = (β1(·), . . . , βk(·))′ is a vector of unknown functions. In this paper, we con-
centrate on the case where X and W ∗ are non-overlapping; this negates the need for backfitting
algorithms in the estimation procedure. We wish to estimate β(w∗) at a given point w∗ ∈ R
using an i.i.d. sample of (Y,X,W ), where W is a noisy measurement of W ∗ generated by

W = W ∗ + ε,

and ε is a measurement error. In this paper, we assume the measurement error is classical;
that is, W ∗ is independent of ε. Although this is somewhat restrictive, it also facilitates a
multiplicative form W = W ∗ε - allowing for the variance of ε to depend on W ∗ - which can then
be transformed to an additive structure by taking the natural logarithm. Furthermore, we do not
require full independence, we only need f ft

W (t) = f ft
W ∗(t)f

ft
ε (t) for all t ∈ R, where f ft

A denotes the
characteristic function of a random variable A. As argued in Schennach (2019), this assumption
is only as strong as a conditional mean restriction.

Our estimation strategy proceeds as follows. By premultiplying (2.1) by X and taking the
conditional expectation, the object of interest β(w∗) can be written as

β(w∗) = MXX(w∗)−1MXY (w∗),

where MXX(w∗) = E[XX ′|W ∗ = w∗] and MXY (w∗) = E[XY |W ∗ = w∗]. The conditional
moments on the right hand side can be estimated by deconvolution techniques. In particular, we
estimate MXX(w∗) and MXY (w∗) by

M̂XX(w∗) =

∑n
j=1XjX

′
jK
(
w∗−Wj

an

)
∑n

j=1 K
(
w∗−Wj

an

) , M̂XY (w∗) =

∑n
j=1XjYjK

(
w∗−Wj

an

)
∑n

j=1 K
(
w∗−Wj

an

) ,

respectively, where an is the bandwidth, K is a deconvolution kernel function defined by

K(x) =
1

2π

ˆ
e−itx K ft(t)

f ft
ε (t/an)

dt,
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and K:R→ R is an ordinary kernel function.
Based on these deconvolution estimators for the conditional moments, β(w∗) can be estimated

by

β̂(w∗) =

 n∑
j=1

XjX
′
jK
(
w∗ −Wj

an

)−1
n∑
j=1

XjYjK
(
w∗ −Wj

an

)
. (2.2)

Li et al. (2002) considered a similar estimator when there is no measurement error and W ∗ is
directly observed. The main difference is that we employ the deconvolution kernel K to deal
with contamination in W ∗.

Throughout this paper, we focus on the case where a single mismeasured covariate W ∗ enters
the coefficient functions β to keep the notation simple. The proposed method, however, can easily
be adapted to the multivariate case. In particular, when β is a function of a set of covariates
(W ∗, Z) with W ∗ ∈ Rdw and Z ∈ Rdz , i.e.,

Y = X ′β(W ∗, Z) + U, E[U |X,W ∗, Z] = 0, (2.3)

we wish to estimate β(w∗, z) at a given point (w∗′, z′)′ ∈ Rdw+dz using an i.i.d. sample of
(Y,X,W,Z), where W is a noisy measurement of W ∗ generated by W = W ∗ + ε̃ and ε̃ =

(ε1, . . . , εdw) is mutually independent and independent of W ∗. Similar to the case when β is
a univariate function of a scalar W ∗, by premultiplying (2.3) by X and taking the conditional
expectation, the object of interest β(w∗, z) can be written as

β(w∗, z) = MXX(w∗, z)−1MXY (w∗, z),

where MXX(w∗, z) = E[XX ′|W ∗ = w∗, Z = z] and MXY (w∗, z) = E[XY |W ∗ = w∗, Z = z].
The conditional moments on the right hand side can be estimated by

M̂XX(w∗, z) =

∑n
j=1XjX

′
jK
(
w∗−Wj

an

)
L
(
z−Zj
bn

)
∑n

j=1 K
(
w∗−Wj

an

)
L
(
z−Zj
bn

) ,

M̂XY (w∗, z) =

∑n
j=1XjYjK

(
w∗−Wj

an

)
L
(
z−Zj
bn

)
∑n

j=1 K
(
w∗−Wj

an

)
L
(
z−Zj
bn

) ,

respectively, where an and bn are bandwidths, L is an ordinary kernel function, and K is a
deconvolution kernel function defined by K(x) =

∏dw
l=1 Kl(xl) with

Kl(xl) =
1

2π

ˆ
e−itxl

K ft(t)

f ft
εl

(t/an)
dt,

and K : R → R is an ordinary univariate kernel. Based on these deconvolution estimators for
the conditional moments, β(w∗, z) can be estimated by

β̂(w∗, z) =

 n∑
j=1

XjX
′
jK
(
w∗ −Wj

an

)
L

(
z − Zj
bn

)−1
n∑
j=1

XjYjK
(
w∗ −Wj

an

)
L

(
z − Zj
bn

)
.

We expect that analogous results to our main theorems can be established for this estimator
as well. Hereafter we focus on the estimator β̂(w∗) in (2.2) and study its asymptotic properties.
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2.2. Asymptotic properties. As in the majority of the deconvolution literature, to investigate
the asymptotic properties of β̂(w∗), we consider two separate cases based on the tail behaviour
of the characteristic function of the measurement error. The first is known as ordinary smooth
error and is characterised by the characteristic function of the measurement error decaying to
zero at some polynomial rate. The second is known as supersmooth error and is defined by an
exponentially decaying characteristic function.

Let λmax(A) and λmin(A) be the maximum and minimum eigenvalues, respectively, of the
matrix A. We impose the following assumptions for both the ordinary and supersmooth cases.

Assumption M. {Yj , Xj ,Wj}nj=1 is an i.i.d. sample of (Y,X,W ) satisfying (2.1), and ε is in-
dependent of (Y,X,W ∗). The function β, the density fW ∗ of W ∗, and the conditional expectation
E[Xk1Xk2 |W ∗ = w∗] for k1, k2 = 1, . . . , k have p continuous, bounded, and integrable derivatives,
where p is a positive integer. E[U2|X,W ∗ = w∗] and E[X2

k1
X2
k2
|W ∗ = w∗] for k1, k2 = 1, . . . , k

are bounded. Also, λmin(E[XX ′|W ∗ = w∗]) > 0 for almost every w∗.

These constitute mild assumptions on the data, and smoothness and boundedness of the
densities and conditional moments. The last condition guarantees the identification of β(w∗).

We begin with the ordinary smooth error case and impose the following assumptions.

Assumption OS.

(1): There exist positive constants αε and cos
ε,0 ≤ cos

ε,1 such that

cos
ε,0|t|−αε ≤ f ft

ε (t) ≤ cos
ε,1|t|−αε for all t ∈ R.

(2): K : R → R satisfies
´
K(x)dx = 1,

´
xpK(x)dx 6= 0 for some positive integer p, and´

xqK(x)dx = 0 for all positive integer q < p. Also K ft is compactly supported on [−1, 1],
symmetric around zero, and bounded.

(3): an → 0 and na1+2αε
n →∞ as n→∞.

(4): f ft
ε (t)|t|αε → cos

ε as |t| → ∞ for some positive constant cos
ε,0 ≤ cos

ε ≤ cos
ε,1.

(5): E[|U |2+ς |X,W ∗ = w∗] and E[|Xk1 |2+ς |W ∗ = w∗] for k1 = 1, . . . , k are bounded for
some ς > 0. E[Xk1Xk2U

2|W ∗ = w∗] and E[X2
k1
X2
k2
|W ∗ = w∗] for k1, k2 = 1, . . . , k are

continuous.
(6): na1+2αε+2p

n → 0 as n→∞.

Assumption OS (1) says that fε is ordinary smooth of order αε. Popular examples of ordinary
smooth densities include the Laplace and gamma density. Assumption OS (2) concerns the kernel
function K. We require K to be a higher-order kernel to control the estimation bias. Assumption
OS (3) gives conditions on the bandwidth an. The first restriction is required for the bias term,
and the second is to control the variance term. Assumption OS (4)-(6) are additional conditions
to derive the asymptotic distribution of β̂(w∗). Assumption OS (4) characterises the exact tail
behaviour of f ft

ε , which is typically needed to derive the distributional result for the deconvolution
based estimators. Assumption OS (5) contains Lyapunov’s conditions to apply the central limit
theorem and some smoothness conditions for conditional moments. Assumption OS (6) gives an
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additional restriction on the bandwidth, where we undersmooth so that the estimation bias is
asymptotically negligible.

Under these assumptions, the asymptotic properties of our deconvolution estimator β̂(w∗) for
β(w∗) are obtained as follows.

Theorem 1.

(i): Under Assumptions M and OS (1)-(3), it holds

|β̂(w∗)− β(w∗)|2 = Op(n
−1a−(1+2αε)

n + a2p
n ).

(ii): Under Assumptions M and OS (1)-(6), it holds√
na1+2αε

n {β̂(w∗)− β(w∗)} d→ N(0,Ω(w∗)),

where Ω(w∗) = S(w∗)−1Σ(w∗)S(w∗)−1 with

S(w∗) = E[XX ′|W ∗ = w∗]fW ∗(w
∗),

Σ(w∗) = C

ˆ
E[XX ′{U +X ′{β(W ∗)− β(w∗)}}2|W ∗ = w∗ − η]fW ∗(w

∗ − η)fε(η)dη,

and C = (2π)−1(cos
ε )−2

´
|K ft(t)|2|t|2αεdt is a constant that depends on both K and fε.

Theorem 1 (i) characterises the L2-risk property of our deconvolution estimator β̂(w∗). The
second term a2p

n in the convergence rate characterises the magnitude of the estimation bias, which
is identical to that of the error-free case. The first term n−1a

−(1+2αε)
n characterises the magnitude

of the estimation variance. Compared to that of the error-free case, the estimation variance of
β̂(w∗) decays slower due to the term a−2αε

n : a smoother error distribution, which is characterised
by a larger αε, would lead to a larger estimation variance, hence a slower convergence rate. Similar
convergence rates have been observed in other nonparametric measurement error problems, such
as, Dong and Otsu (2019) for nonparametric additive models with errors-in-variables, Adusumilli
and Otsu (2018) for nonparametric instrumental variable regressions with errors-in-variables, and
Otsu and Taylor (2019) for specification testing in errors-in-variables regressions. Theorem 1 (ii)
says that the estimator β̂(w∗) is asymptotically normal, centred at the true value, and has
variance S(w∗)−1Σ(w∗)S(w∗)−1. Note that fε can be set as the Dirac delta function when there
is no measurement error. So in the error-free context, Σ(w∗) =

´
K2(x)dxE[XX ′U2|W ∗ =

w∗]fW ∗(w
∗), which implies that the asymptotic variance Ω(w∗) would degenerate to the error-

free asymptotic variance as in Li et al. (2002, Theorem 2.1).
In the supersmooth case, we impose the following assumptions.

Assumption SS. (1): For some positive constants css
ε , µε, and 1/3 < γε ≤ 2, it holds

f ft
ε (t)→ css

ε e
−µε|t|γε as |t| → ∞.

(2): K : R → R satisfies
´
K(x)dx = 1,

´
xpK(x)dx 6= 0 for some positive integer p,

and
´
xqK(x)dx = 0 for all positive integer q < p. Also K ft is compactly supported on

[−1, 1], symmetric around zero, and satisfies K ft(1− t) = Atθ + o(tθ) as t→ 0, for some
constants A and θ ≥ 0.
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(3): an → 0 and na2−2γε(1+θ)
n e−2µεa

−γε
n →∞ as n→∞.

(4): E[|U |2+ς |X,W ∗], and E[|Xk1 |2+ς |W ∗] for k1 = 1, . . . , k are bounded for some ς > 0.
(5): If 1 ≤ γε ≤ 2, then na

2−2γε(1+θ)+2p
n e−2µεa

−γε
n → 0 as n → ∞. If 1/3 < γε < 1, then

na
1−γε(1+2θ)+2p
n e−2µεa

−γε
n → 0 as n→∞. Also, na2

n → 0 as n→∞.

Assumption SS (1) says that fε is supersmooth. Popular examples of supersmooth densities
include the Gaussian and Cauchy density. We restrict γε to be less than or equal to 2 to ensure
that fε is a density (Chung, 1975, Theorem 6.5.4), while the lower bound of 1/3 guarantees that
an approximation error is of smaller order than the asymptotic variance (the same assumption is
imposed in van Es and Uh, 2004). Assumption SS (2) is the same as in the ordinary smooth case
with an additional condition on the kernel function K. Examples of popular kernel functions
which satisfy this extra constraint include the Sinc kernel, K(x) = sin(x)/(πx), where θ = 0,
and the kernel proposed in Fan (1992),

K(x) =
48x(x2 − 15) cos(x)− 144(2x2 − 5) sin(x)

πx7
,

where θ = 3. Assumption SS (3) concerns the bandwidth an; similar comments to the ordinary
smooth case apply here. Equally, Assumption SS (4) and (5) are analogous to Assumption OS
(5) and (6) in the ordinary smooth case.

Under these assumptions, our deconvolution estimator β̂(w∗) has the following asymptotic
properties.

Theorem 2.

(i): Suppose that Assumptions M and SS (1)-(3) hold true. Then

|β̂(w∗)− β(w∗)|2 =

Op
(
n−1a

−2+2γε(1+θ)
n e2µεa

−γε
n + a2p

n

)
for 1 ≤ γε ≤ 2,

Op

(
n−1a

−1+γε(1+2θ)
n e2µεa

−γε
n + a2p

n

)
for 1/3 < γε < 1.

(ii): Suppose that Assumptions M and SS (1)-(5) hold true. Then

Ωn(w∗)−1/2{β̂(w∗)− β(w∗)} d→ N(0, Ik),

where Ωn(w∗) = V ar(ξ(w∗)) and

ξ(w∗) =
1

an
X[U +X ′{β(W ∗)− β(w∗)}]K

(
w∗ −W
an

)
.

Also, Ωn(w∗)−1/2 =

O
(
n1/2a

1−γε(1+θ)
n e−µεa

−γε
n

)
for 1 ≤ γε ≤ 2

O
(
n1/2a

{1−γε(1+2θ)}/2
n e−µεa

−γε
n

)
for 1/3 < γε < 1

.

Similar comments to Theorem 1 apply here. However, in the supersmooth setting, we dis-
tinguish between two cases depending on the smoothness parameter γε. In particular, as also
shown in van Es and Uh (2004), the limiting behaviour of our estimator changes at the ’Cauchy
boundary’, where γε = 1. Compared to the ordinary smooth case, the rate of convergence is
much slower, reflecting the more difficult task of deconvolution in the presence of supersmooth
contamination. Comparably slow rates have been observed in other supersmooth settings, such
as Fan (1992) and Schennach (2004).
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3. case of unknown measurement error distribution

3.1. Setup and estimator. Assuming the measurement error distribution to be known is un-
realistic in many applications. In this section, we consider the situation where fε is unknown
but repeated measurements on W ∗ are available. Suppose we have two independent noisy mea-
surements of the error-free covariate W ∗, i.e.,

Wj = W ∗j + εj and W r
j = W ∗j + εrj , (3.1)

for j = 1, . . . , n. To identify the distribution of ε, we impose the following assumption.

Assumption R. εr has the same distribution as ε and is independent of (Y,X,W ∗), fW ∗ and
fε are square-integrable, f ft

W ∗ and f
ft
ε vanish nowhere, and E[ε] = 0.

These assumptions are common in the literature (e.g., Li and Vuong, 1998, and Kurisu and
Otsu, 2019). Under Assumption R, Kotlarski’s (1967) identity gives

f ft
W ∗(t) = exp

(ˆ t

0

iE[W reisW ]

E[eisW ]
ds

)
, (3.2)

and the error distribution is identified by f ft
ε (t) =

f ftW (t)

f ft
W∗ (t)

. Based on an i.i.d. sample {Wj ,W
r
j }nj=1

of (W,W r), f ft
ε (t) can be estimated by its sample analog (Li and Vuong, 1998)

f̂ ft
ε (t) =

f̂ ft
W (t)

f̂ ft
W ∗(t)

,

where f̂ ft
W (t) = n−1

∑n
j=1 e

itWj and f̂ ft
W ∗(t) = exp

(´ t
0

i 1
n

∑n
j=1W

r
j e

isWj

1
n

∑n
j=1 e

isWj
ds

)
. By replacing f ft

ε (t)

with f̂ ft
ε (t) in (2.2), we propose the following estimator

β̃(w∗) =

 n∑
j=1

XjX
′
jK̂
(
w∗ −Wj

an

)−1
n∑
j=1

XjYjK̂
(
w∗ −Wj

an

)
, (3.3)

where K̂(x) = 1
2π

´
e−itx Kft(t)

f̂ ftε (t/an)
dt. A similar plug-in estimator was used in Schennach (2004)

for the regression function when the regressor is mismeasured and repeated noisy measurements
are available.

3.2. Asymptotic properties. To analyse the asymptotic properties of β̃(w∗), we use the fol-
lowing class of functions W, which is introduced by Schennach (2004)

Definition. Let W be the set of all functions ψ : R→ R such that (i) ψ(t) is absolutely integrable
in every finite interval, and (ii)

´
|t|≥T |ψ(t) − Ψ(t)|dt < ∞ for some T > 0 and some function

Ψ(t) that can be written as a finite linear combination of finite products of functions of the form
|t|c, sgn(t)|t|c, log |t|, sin(c1t), cos(c1t), exp(c1t

a) with c > 0, c1 ∈ R, and a ∈ N.

As Schennach (2004, p. 1062) argued, this class W characterises a class of functions that are
well behaved at infinity, and is useful to derive a lower bound for the asymptotic variance of
the estimator. For the asymptotic distribution of β̃(w∗) (but not for the convergence rate), we
impose the following assumptions for both the ordinary smooth and supersmooth error cases.
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Assumption M’.

(1): fW (w) > 0, E[(W r)2|W = w] > 0, and E[(λ′X)2{U + X ′{β(W ∗) − β(w∗)}}2|W =

w] > 0 for all w ∈ R and λ ∈ Rk with ||λ|| = 1.
(2): dmλl (t)

dt ∈W for each l = 1, 2, 3 and λ ∈ Rk with ||λ|| = 1, where

mλ
1(t) =

λ′A(t, w∗)df ft
W ∗(t)/dt

f ft
W ∗(t)

2f ft
ε (t)

+
λ′ {E[XX ′|W ∗ = ·]{β(·)− β(w∗)}fW ∗(·)}ft (t)e−itw∗

f ft
W ∗(t)f

ft
ε (t)

,

mλ
2(t) =

λ′A(t, w∗)

f ft
W ∗(t)f

ft
ε (t)

, mλ
3(t) =

1

f ft
ε (t)

,

and

A(t, w∗) =


´∞
t e−isw∗ {E[XX ′|W ∗ = ·]{β(·)− β(w∗)}fW ∗(·)}ft (s)ds t ≥ 0,´ −∞
t e−isw∗ {E[XX ′|W ∗ = ·]{β(·)− β(w∗)}fW ∗(·)}ft (s)ds t < 0.

(3): For any λ ∈ Rk with ||λ|| = 1, there exists some constant c > 0 such that

V ar

(
3∑
l=1

λ′ζl,1

)
≥ c max

l=1,2,3
V ar(λ′ζl,1),

where ζl,1 for l = 1, 2, 3 are defined in (B.1) in Appendix.

Assumption M’ contains further conditions to derive the distributional results of our estimator
when the error distribution is unknown for both ordinary and supersmooth cases. We emphasise
that the convergence rate results below do not require this assumption. Assumption M’ (1)-(2)
are regularity conditions to derive the lower bound for the estimation variance; these are also used
in Schennach (2004, Assumptions 12 and 13). In particular, Assumption M’ (2) is a smoothness
condition, and it is essentially compatible with our existing conditions on the smoothness of f ft

ε ,
like Assumption OS (4) and SS (1), in the case of known measurement error distribution. To
understand this, note that dmλ3 (t)

dt = −df ftε (t)/dt
f ftε (t)2

. If f ft
ε (t) ∝ (1 + |t|)−αε for all t ∈ R, then dmλ3 (t)

dt ∝
(1+ |t|)αε−1, which belongs to W for any positive integer αε > 1. If f ft

ε (t) ∝ e−µε|t|γε for all t ∈ R,
then dmλ3 (t)

dt ∝ |t|γε−1eµε|t|
γε , which also belongs to W for any integer γε ≥ 1. Assumption M’ (2),

however, is stronger than Assumption OS (4) and SS (1) as it imposes further restrictions on the
smoothness of f ft

ε , f ft
W ∗ , and {E[XX ′|W ∗ = ·]{β(·)− β(w∗)}fW ∗(·)}ft (t) and their derivatives

by requiring dmλ1 (t)
dt ,

dmλ2 (t)
dt ∈W, which is used to derive the asymptotic distribution of β̃(w∗) as

fε is not directly known but estimated. Assumption M’ (3) states that the variance of β̃(w∗) is
of an order no less than any term in its asymptotic representation; this is also used in Schennach
(2004, Assumption 14).

We again start with the case of ordinary smooth measurement error and introduce the following
additional assumptions.

Assumption OS’.

(1): For some positive constants αw > 1 and cos
w,1 ≥ cos

w,0, it holds

cos
w,0|t|−αw ≤ |f ft

W ∗(t)| ≤ cos
w,1|t|−αw for all t ∈ R.

(2): n−1a
−(6αw+6αε+2)
n (log a−1

n )2 → 0 as n→∞.

9



(3): There exists a positive constant ς such that for each λ ∈ Rk with |λ| = 1, it holds

min


n

ς
2+ς a4αw+2αε+4

n ,

n(log a−1
n )−4a6αw+4αε+6

n ,

n−1a−2p
n

 max
l=1,2,3

ˆ
|mλ

n,l(t)|2dt→∞,

as n→∞, where mλ
n,l(t) for l = 1, 2, 3 are defined in (B.12) in Appendix.

Assumption OS’ (1) assumes that fW ∗ is ordinary smooth of order αw, which is introduced to
guarantee the consistency of the estimated error characteristic function f̂ ft

ε . Since f̂ ft
ε is defined

by the ratio of the empirical averages, to characterise its estimation error, we need both the upper
and lower bounds of f ft

W ∗ . Assumption OS’ (2) guarantees that MXX is consistently estimated
when we use the estimated error characteristic function f̂ ft

ε in place of f ft
ε . Assumption OS’ (3)

contains further restrictions on the bandwidth in order to use the Lyapunov central limit theorem
and to ensure the asymptotic negligibility of the estimation bias and the higher order terms in
the estimation variance.

Theorem 3.

(i): Under Assumptions M, R, OS (1)-(3), and OS’ (1)-(2), it holds

|β̃(w∗)− β(w∗)|2 = Op

(
n−1a−(4αw+2αε+4)

n + n−2a−(6αw+4αε+6)
n (log a−1

n )4 + a2p
n

)
.

(ii): Under Assumptions M, M’, R, OS (1)-(3), and OS’ (1)-(3), it holds

Vn(w∗)−1/2{β̃(w∗)− β(w∗)} d→ N(0, Ik),

where Vn(w∗) = S(w∗)−1V ar
(∑3

l=1 ζl,1

)
S(w∗)−1 and S(w∗) = E[XX ′|W ∗ = w∗]fW ∗(w

∗).

Theorem 3 (i) shows the L2-risk of our estimator when the error characteristic function is
estimated by Li and Vuong’s (1998) estimator. The first term results from the estimation of
the measurement error characteristic function and, under Assumption OS’ (3), represents the
dominant term. The second term is the approximation error from a linearisation needed to
establish the asymptotic properties of the estimator. Finally, the third part is the usual bias
term from the nonparametric estimator. Theorem 3 (ii) shows that the estimator retains its
asymptotic normality when the measurement error characteristic function is estimated using the
approach of Li and Vuong (1998). Interestingly, the convergence rate and asymptotic distribution
are driven by the estimation error of the measurement error characteristic function; this is also
seen in, for example, Schennach (2004) and Kurisu and Otsu (2019).

The convergence rates achieved in this setting are slower than those in Theorem 1 where
the error distribution is known. Furthermore, Delaigle, Hall and Meister (2008) show for the
nonparametric regression estimator that when the density of the measurement error is assumed
to be unknown but symmetric - which allows for a simple estimator of the error characteristic
function - the convergence rate is the same as if the error density was known (providing that the
density of W ∗ is sufficiently smooth in relation to that of the measurement error density). We
conjecture that a similar result holds in this varying coefficient setting so that the convergence
rate given in Theorem 1 is maintained under a symmetric unknown error density. Theorem 3

10



shows that this rate deteriorates quite considerably when the symmetry assumption is relaxed,
and the estimator of Li and Vuong (1998) is used for the error characteristic function. This
is in line with previous research which shows a similar reduction in the convergence rate when
symmetry is relaxed, and the error distribution is estimated, see, for example, Bonhomme and
Robin (2010), Comte and Kappus (2015), and Kurisu and Otsu (2019).

We now turn to the case of super smooth measurement error and introduce the following
additional assumptions.

Assumption SS’.

(1): For some positive constants µw, γw, and css
w,0 ≤ css

w,1, it holds

css
w,0e

−µw|t|γw ≤ f ft
W ∗(t) ≤ css

w,1e
−µw|t|γw for all t ∈ R.

(2): n−1a−2
n (log a−1

n )2 exp(6µwa
−γw
n + 4µεa

−γε
n )→ 0 as n→∞.

(3): There exists a positive constant ς such that for each λ ∈ Rk with |λ| = 1, it holds

min


n

ς
2+ς a4

ne
−4µwa

−γw
n −2µεa

−γε
n ,

na6
n(log a−1

n )−4e−6µwa
−γw
n −4µεa

−γε
n ,

n−1a−2p
n

 max
l=1,2,3

ˆ
|mλ

n,l(t)|2dt → ∞,

as n→∞, where mλ
n,l(t) for l = 1, 2, 3 are defined in (B.12) in Appendix.

Assumption SS’ (1) assumes that fW ∗ is supersmooth of order γw. Again, since f̂ ft
ε is defined

by the ratio of the empirical averages, to characterise the estimation error, we need both the
upper and lower bounds of f ft

W ∗ . As in the ordinary smooth case, Assumption SS’ (2) guarantees
that MXX is consistently estimated. Assumption SS’ (3) contains similar further restrictions on
the bandwidth as were used in the ordinary smooth setting.

Theorem 4.

(i): Under Assumptions M, R, SS (1)-(3), and SS’ (1)-(2), if 1 ≤ γε ≤ 2, then

|β̂(w∗)− β(w∗)|2 = Op

(
n−1a−4

n e4µwa
−γw
n +2µεa

−γε
n + n−2a−6

n (log a−1
n )4e6µwa

−γw
n +4µεa

−γε
n + a2p

n

)
.

If 1/3 < γε < 1, then

|β̂(w∗)− β(w∗)|2 = Op

(
n−1a−4

n e4µwa
−γw
n +2µεa

−γε
n + n−2a−6

n (log a−1
n )4e6µwa

−γw
n +4µεa

−γε
n + a2p

n

)
.

(ii): Under Assumptions M, M’, R, SS (1)-(3), and SS’ (1)-(3),

Vn(w∗)−1/2{β̃(w∗)− β(w∗)} d→ N(0, Ik),

where Vn(w∗) = S(w∗)−1V ar[T̂ dom
n (w∗)]S(w∗)−1, and T̂ dom

n (w∗) is defined in Appendix.

Similar comments to Theorem 3 apply here. Again the dominant term comes from the estima-
tion of the measurement error characteristic function, and Assumption SS’ (3) ensures that the
bias terms from the nonparametric estimation and linearisation are asymptotically negligible.
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4. Simulation

In this section, we analyse the small sample properties of our deconvolution estimator using
a Monte Carlo study. We focus on the estimator for the unknown measurement error case of
Section 3 and consider the following data generating process

Y = X1β1(W ∗) +X2β2(W ∗) + U,

where (X1, X2) is drawn from N

((
0

0

)
,

(
1 0.2

0.2 1

))
and independent of (W ∗, U), U is

drawn from N(0, 0.025) and independent of W ∗. W ∗ is assumed unobservable, however we
observeW = W ∗+ε1 andW r = W ∗+ε2, where (ε1, ε2) is mutually independent and independent
of (X1, X2,W

∗, U). For the densities of W ∗ and (ε1, ε2), we consider two cases. First, for the
ordinary smooth setting, (ε1, ε2) have a zero mean Laplace distribution with standard deviation
of 1/3, and W ∗ also has a zero mean Laplace distribution with standard deviation of 1. Second,
for the supersmooth situation, (ε1, ε2) have a normal distribution with zero mean and standard
deviation of 1/3, and W ∗ is standard normal. We consider three different data generating
processes based on β1(·) and β2(·). In each case, we take β1(w) = w, and for β2(·) we consider

DGP1 :β2(w) = 1,

DGP2 :β2(w) = w + w2,

DGP3 :β2(w) = cos(0.5πw).

Throughout this simulation study, we use the infinite-order flat-top kernel proposed by Mc-
Murray and Politis (2004), defined by its Fourier transform as

K ft(t) =


1 if |t| ≤ 0.05,

exp
{
− exp(−(|t|−0.05)2)

(|t|−1)2

}
if 0.05 < |t| < 1,

0 if |t| ≥ 1.

This kernel satisfies Assumptions OS (2) and SS (2) and exhibits more stable estimates than
the sinc kernel and the kernel of Fan (1992) in our preliminary simulations (not reported). We
provide results for two sample sizes, n = 250, 500, and all results are based on 500 Monte Carlo
replications.

4.1. Bandwidth choice. As with any nonparametric kernel estimation method, the bandwidth
choice is critical for the performance of our estimator. We suggest the method proposed by
Bissantz et al. (2007), which provides a sensible choice in our setting. In that paper, they explain
that the dependence between the bandwidth and the L∞ distance between a deconvolution kernel
density estimate and the true density changes depending on whether the bandwidth is larger or
smaller than the optimal choice. We see the same pattern in our varying coefficient context.
Figure 1 (a) shows the relationship between the bandwidth and the L∞ distance between our
varying coefficient estimator for β1(w) = w in DGP2 and the truth, while Figure 1 (b) shows
the same relationship for our estimator of β2(w) = w + w2 in DGP2.

12



Figure 1. (a) shows the relationship between the bandwidth and the L∞ dis-
tance between our varying coefficient estimator for β1(w) = w in DGP2 and the
truth. (b) shows the same relationship for β2(w) = w + w2 in DGP2. In both
plots, the sample size is 500, and the data is contaminated with Gaussian error.

This pattern is not an artefact of the data generating process; similar results are obtained
for different functional forms and different types of measurement error. Bissantz et al. (2007)
explained that for large bandwidths, the estimator becomes very smooth, so that changes in the
bandwidth produce only minor changes in the L∞ distance from the truth. However, when the
bandwidth is smaller than the optimal choice “those frequencies in the spectral domain where the
empirical characteristic function is dominated by noise in the data contribute increasingly more
to the estimator, producing increasingly strong artificial oscillations” (Bissantz et al., 2007, pp.
494). As a result, small changes in the bandwidth produce large changes in the L∞ distance.

Given the close similarity to the findings of Bissantz et al. (2007), we pursue the same
bandwidth selection approach in this paper. This involves estimating the varying coefficient
functions for a range of bandwidths of decreasing size and choosing the largest bandwidth such
that the change in the L∞ distance for two estimators using consecutive bandwidths is larger
than some threshold, T . In particular, following Kato and Sasaki (2018) (who also use this
bandwidth choice method), we take the set of bandwidths to be aj = ja0/J for j = 1, . . . , J

where J = 4 log n and a0 is a pilot bandwidth that is larger than the optimal choice.
There is no ’correct’ choice for the pilot bandwidth. Fortunately, it is easy to determine

whether a given choice is large enough by plotting the L∞ distance for two estimators using
consecutive bandwidths (see Figure 2). Furthermore, in our setting, if the threshold, T , is chosen
large enough, this method is surprisingly adept at recovering the optimal bandwidth from any
suitably large choice of a0. As such, we take a0 = 0.5 and choose T = d

(∞)
J−1,J log n where d(∞)

J−1,J is
the L∞ distance between the estimate using the pilot bandwidth and the estimate using the next
largest bandwidth. This departs slightly from Bissantz et al. (2007) and Kato and Sasaki (2018)
who choose T = 2d

(∞)
J−1,J and T = 0.4d

(∞)
J−1,J log n, respectively, and a0 is the normal-reference
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bandwidth (Delaigle and Gijbels, 2004).1 With regards to T , we find that a larger threshold
is better able to find the optimal bandwidth in our setting. In the next paragraph, we discuss
another reason why a larger T is preferable in our setting.

Figure 2. (a) Shows the relationship between the bandwidth and d
(∞)
j−1,j for

j = 1, . . . , 4 ln(n) for the estimation of β1(w) = w in DGP2. (b) shows the same
relationship for β2(w) = w + w2 in DGP2. In both plots, the sample size is 500,
and the data is contaminated with Gaussian error.

In contrast to Bissantz et al. (2007) and Kato and Sasaki (2018) who are concerned with the
estimation of a density, our focus is on a regression function. In particular, in this simulation
study, we estimate two functions, β1(·) and β2(·), and it may be that the L∞ distance between
each function and the truth is minimised by different bandwidths. However, given the form
of our estimator, only one bandwidth can be chosen. Furthermore, since W ∗ is unobserved, it
is not possible to choose the bandwidth to minimise the distance between E[Y |X,W ∗] and its
estimator.2 We suggest to perform the above bandwidth selection procedure for each of β1(·) and
β2(·), respectively, then select the final bandwidth as the larger of the two. As seen in Figure 1,
bandwidths that are smaller than the optimal can result in much poorer performance than larger
bandwidths. Hence, we should be cautious of choosing a bandwidth smaller than the optimal.
However, we must balance this with the knowledge that the bandwidth selected will be larger
than optimal for one of the regression functions. Thus, it is important to select a bandwidth as
small as possible without going beyond the optimal; a larger value for T is more likely to achieve
this.

1There is no theory for selecting a normal-reference bandwidth for our estimator. Moreover, there is no reason to
suppose this would result in a suitably large pilot bandwidth in any case.
2Although ̂E[Y |X,W ∗] = X1β̂1(W

∗) +X2β̂2(W
∗) can be calculated, the L∞-distance based bandwidth selection

procedure cannot use this as supx,w | ̂E[Y |X = x,W ∗ = w; a1]− ̂E[Y |X = x,W ∗ = w; ; a2] = supx,w |x1|β̂1(w; a1)−
β̂1(w; a2)|+ x2|β̂2(w; a1)− β̂2(w; a2)|| =∞ as X is normally distributed and is supported on R.
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To reduce the computational cost, the bandwidth selection procedure was conducted in 100
preliminary simulations, and the average value was chosen for all subsequent simulations.

4.2. Results. In Table 1, we report results for our varying coefficient estimator when the mea-
surement error is assumed unknown. In particular, we calculate the median integrated squared
error (MISE) over the range [−σW ∗ , σW ∗ ], and use a naive bootstrap to report the coverage of
the confidence interval at w∗ = 0 with a nominal level of 95%.

Table 1: Simulation Results

DGP1 Ordinary Smooth Supersmooth

n Function MISE Coverage MISE Coverage

250
β1(·) 0.09 94.0 0.24 97.2

β2(·) 0.05 95.2 0.11 97.8

500
β1(·) 0.06 94.8 0.22 97.0

β2(·) 0.03 94.4 0.06 96.2

DGP2

250
β1(·) 0.15 94.6 0.50 96.6

β2(·) 0.34 96.2 0.70 97.2

500
β1(·) 0.09 95.2 0.47 98.0

β2(·) 0.26 95.8 0.68 91.4

DGP3

250
β1(·) 0.10 93.2 0.37 97.2

β2(·) 0.21 93.0 0.29 97.8

500
β1(·) 0.07 95.4 0.36 97.2

β2(·) 0.17 93.0 0.21 97.2

The results are encouraging and seem to align with our theoretical findings. For each functional
form and each sample size, the MISE is higher under supersmooth error than under ordinary
smooth. This reflects the slower convergence rates of our estimator in the face of supersmooth
error contamination found in Section 3. For the ordinary smooth case, the estimator performs
well when the coefficient function is linear or constant (β1(·) in all DGPs and β2(·) in DGP1),
but struggles more when faced with nonlinearity. This pattern is not as clear in the supersmooth
setting. For example, in DGP3, the estimator is better able to estimate the nonlinear function,
β2(·), than the linear one. This is likely to be a result of the bandwidth selection mechanism
choosing a bandwidth slightly smaller than optimal.
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Indeed, the coverage probabilities also point to the possibility that the bandwidth choice for
the supersmooth case is too small. In general, smaller bandwidths result in wider confidence
intervals and, consequently, higher coverage probabilities. Whereas for ordinary smooth error,
the coverage probabilities are close to the nominal level and suggest that perhaps the bandwidth
selection procedure has worked well.

5. Conclusion

In this paper, we develop an estimator for the varying coefficient models when the covariate in
the coefficient functions is contaminated with classical measurement error. Using deconvolution
kernel methods, the estimator is constructed following a similar two-step procedure as used in Li
et al. (2002) for the error-free case. We study the case when the error density is known, and also
the case when the error density is unknown but a repeated measurement of the noisy covariate is
available. In both cases, we show that the proposed estimator is consistent and asymptotically
normally distributed. In particular, when the error density is unknown, we use the approach
of Li and Vuong (1998) based on Kotlarski’s (1967) identity to estimate the error characteristic
function, which allows the error density to be asymmetric. Although this approach significantly
increases the applicability of the estimator, we show that it does reduce the convergence rate.
Finally, the finite sample performance of the estimator is investigated by Monte Carlo simulation.
We find that the estimator is more sensitive to the choice of bandwidth when the bandwidth is
below the optimal level. As such, following Bissantz et al. (2007), we use a L∞-distance based
approach to select the bandwidth. Under this choice, the estimator shows a good finite sample
performance with only a mild requirement on the sample size.
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Appendix A. Proofs for Section 2

Notation. For the results in Section 2, define

ξj =
1

an
Xj [Uj +X ′j{β(W ∗j )− β(w∗)}]K

(
w∗ −Wj

an

)
, (A.1)

Sn =
1

nan

n∑
j=1

XjX
′
jK
(
w∗ −Wj

an

)
, Tn =

1

n

n∑
j=1

(ξj − E[ξj ]), Bn = E[ξj ].

Then the estimator β̂(w∗) is written as

β̂(w∗) = β(w∗) + S−1
n (Tn +Bn).

A.1. Proof of Theorem 1 (i). Let S = E[XX ′|W ∗ = w∗]fW ∗(w
∗), ξk1j denote the k1-th

element of ξj for k1 = 1, . . . , k, and Sk1,k2n and Sk1,k2 denote the (k1, k2)-th element of Sn and S
for k1, k2 = 1, . . . , k, respectively. Observe that

|β̂(w∗)− β(w∗)|2 = |S−1
n (Tn +Bn)|2 ≤ 2λmax(S−2

n )(|Tn|2 + |Bn|2).

Note that λmax(S−2
n ) = {λmin(Sn)}−2 and λmin(Sn) ≥ inf |δ|=1 δ

′(Sn − S)δ + λmin(S). By
λmin(S) > 0 (Assumption M), if Sn

p→ S, we have

|β̂(w∗)− β(w∗)|2 = Op(|Tn|2 + |Bn|2). (A.2)

To show Sn
p→ S, note that

E[Sk1,k2n ] =
1

2πan

ˆ
e−itw∗/an {E[Xk1Xk2 |W ∗ = ·]fW ∗(·)}ft (t/an)K ft(t)dt

=(1)
1

an
E

[
Xk1Xk2K

(
w∗ −W ∗

an

)]
=

ˆ
{E[Xk1Xk2 |W ∗ = ·]fW ∗(·)} (w∗ − anu)K(u)du

=(2) Sk1,k2 +O(apn), (A.3)

where (1) follows by Plancherel’s isometry and (2) follows by the smoothness of E[Xk1Xk2 |W ∗ =

·] and fW ∗ (Assumption M) and the properties of the kernel functions K (Assumption OS (2)).
Also, note that

V ar(Sk1,k2n ) ≤ 1

na2
n

E

[
X2
k1X

2
k2K

2

(
w∗ −W
an

)]
=

1

na2
n

ˆ ˆ
K2

(
w∗ − u− η

an

){
E[X2

k1X
2
k2 |W

∗ = ·]fW ∗(·)
}

(u)fε(η)dudη

=(1)
1

na2
n

ˆ
K2

(
w∗ − ũ
an

) ˆ {
E[X2

k1X
2
k2 |W

∗ = ·]fW ∗(·)
}

(ũ− η)fε(η)dηdũ

=(2) O

(
1

na2
n

ˆ
K2

(
w∗ − ũ
an

)
dũ

)
=(3) O

(
1

nan

ˆ
K2(ǔ)dǔ

)
,

=(4) O(n−1a−(1+2αε)
n ), (A.4)

where (1) follows by the change of variables ũ = u + η, (2) follows by the boundedness of
E[X2

k1
X2
k2
|W ∗ = ·] and fW ∗ (Assumption M), (3) follows by the change of variables ǔ = w∗−ũ

an
,

(4) follows by Lemma 1. Thus, by (A.3), (A.4), and Assumption OS (3), we obtain Sn
p→ S.
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For |Tn|2, note that

V ar(ξk1j ) = E

[
E
[
X2
k1 |U +X ′{β(W ∗)− β(w∗)}|2

∣∣W ∗]K2

(
w∗ −W
an

)]
=(1) O

(
1

an

ˆ
K2(ǔ)dǔ

)
=(2) O(a−(1+2αε)

n ),

where (1) follows by the boundedness of E[X2
k1
X2
k2
|W ∗ = ·], E[U2|X,W ∗ = ·], and β as in

Assumption M, and (2) follows by Lemma 1. Thus, by |Tn|2 = Op

(
n−1 maxk1 V ar(ξ

k1
j )
)
, we

obtain
|Tn(w∗)|2 = Op(n

−1a−(1+2αε)
n ). (A.5)

For |Bn|2, note that

E[ξj ] =(1)
1

an
E

[
XX ′[β(W ∗)− β(w∗)]K

(
w∗ −W
an

)]
=

1

2πan

ˆ
e−itw∗/an

{
E[XX ′β(W ∗)|W ∗ = ·]fW ∗(·)

}ft
(t/an)K ft(t)dt

−β(w∗)

2πan

ˆ
e−itw∗/an

{
E[XX ′|W ∗ = ·]fW ∗(·)

}ft
(t/an)K ft(t)dt

=
1

an
E

[
XX ′β(W ∗)K

(
w∗ −W ∗

an

)]
− β(w∗)

an
E

[
XX ′K

(
w∗ −W ∗

an

)]
=

1

an

ˆ {
E[XX ′|W ∗]fW ∗β

}
(u)K

(
w∗ − u
an

)
du− β(w∗)

an

ˆ {
E[XX ′|W ∗]fW ∗

}
(u)K

(
w∗ − u
an

)
du

=(2)

ˆ {
E[XX ′|W ∗]fW ∗β

}
(w∗ − anũ)K(ũ)dũ− β(w∗)

ˆ {
E[XX ′|W ∗]fW ∗

}
(w∗ − anũ)K(ũ)dũ

=(3) O(apn), (A.6)

where (1) follows by E[U |X,W ∗] = 0, (2) follows by the change of variable ũ = w∗−u
an

, and (3)
follows by the smoothness of E[Xk1Xk2|W ∗ = ·], fW ∗ , and β and the properties of the kernel
function K from Assumption OS (2). Thus, by |Bn|2 ≤ kmaxk1 E

2[ξk1j ], we obtain

|Bn|2 = O(a2p
n ). (A.7)

Combining (A.2), (A.5), and (A.7), the conclusion follows.

A.2. Proof of Theorem 1 (ii). First, we show the asymptotic normality of Tn, i.e.,√
na1+2αε

n Tn
d→ N(0,Σ). (A.8)

By the Cramér–Wold device, (A.8) is equivalent to√
na1+2αε

n λ′Tn
d→ N(0, λ′Σλ), (A.9)

for each λ ∈ Rkwith |λ| = 1. We first establish the normalised version of (A.9), i.e.,

λ′Tn√
V ar(λ′Tn)

d→ N(0, 1). (A.10)
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For (A.10), it suffices to check whether the Lyapunov condition is satisfied for some ς > 0, i.e.,

E|λ′ξj − E[λ′ξj ]|2

nς/2{V ar(λ′ξj)}1+ς/2
→ 0. (A.11)

Let g1,ς(u) = E[λ′X|2+ς{|U |2+ς + |{β(W ∗)−β(w∗)}′X|2+ς}|W ∗ = u]fW ∗(u). For the numerator
of (A.11), we have

E|λ′ξj − E[λ′ξj ]|2+ς ≤(1) 22+ςE|λ′ξj |2+ς

≤(2) 23+2ςa−2−ς
n

ˆ ˆ ∣∣∣∣K(w∗ − u− ηan

)∣∣∣∣2+ς

g1,ς(u)fε(η)dudη

=(3) 23+2ςa−2−ς
n

ˆ ∣∣∣∣K(w∗ − ũan

)∣∣∣∣2+ς ˆ
g1,ς(ũ− η)fε(η)dηdũ

=(4) O

(
a−2−ς
n

ˆ ∣∣∣∣K(w∗ − ũan

)∣∣∣∣2+ς

dũ

)
=(5) O

(
a−1−ς
n

ˆ
|K(ǔ)|2+ςdǔ

)
=(6) O(a−1−2αε−ς(1+αε)

n ),

where (1) and (2) follow by Jensen’s inequality, (3) follows by the change of variables ũ = u+η, (4)
follows by the boundedness of β, E[|U |2+ς |X,W ∗ = ·], and E[|Xk1 |2+ς |W ∗ = ·] for k1 = 1, . . . , k

(Assumption OS (4)), (5) follows by the change of variables ǔ = w∗−ũ
an

, (6) follows by Assumption
OS (2) and

ˆ
|K(ǔ)|2+ςdǔ = sup

ǔ
|K(ǔ)|ς

ˆ
K2(ǔ)dǔ =(1)

(ˆ
|K ft(t)|
|f ft
ε (t/an)|

dt

)ς
O(a−2αε

n )

=(2) O

a−2αε
n

(
inf
|t|≤a−1

n

|f ft
ε (t)|ς

)−1
 =(3) O

(
a−(2+ς)αε
n

)
,

where (1) follows by Lemma 1, (2) follows by Assumption OS (2), and (3) follows by Assumption
OS (1).

Let g2(u) = E[|λ′X{U + X ′{β(W ∗) − β(w∗)}}|2|W ∗ = u]fW ∗(u). For the denominator of
(A.11), we have

E|λ′ξj |2 =
1

a2
n

ˆ ˆ
K2

(
w∗ − u− η

an

)
g2(u)fε(η)dudη

=(1)
1

a2
n

ˆ
K2

(
w∗ − ũ
an

)ˆ
g2(ũ− η)fε(η)dηdũ

=(2)
1

2πcos2
ε a1+2αε

n

ˆ
g2(w∗ − η)fε(η)dη

ˆ
|K ft(t)|2|t|2αεdt(1 + o(1)),

where (1) follows by the change of variables ũ = u+ η, (2) follows by the continuity of
´
g2(ũ−

η)fε(η)dη implied by Assumption M and Fan (1991, Lemma 2.1). Therefore, the Lyapunov
condition in (A.11) is satisfied if nan →∞ as n→∞, which holds under Assumption OS (3).

To show (A.9), besides (A.10), we also need

na1+2αε
n V ar(Tn)→ Σ. (A.12)

For (A.12), decompose na1+2αε
n V ar(Tn) = Vn,1 + Vn,2, where

Vn,1 = a1+2αε
n E[ξjξ

′
j ], Vn,2 = −a1+2αε

n E[ξj ]E[ξj ]
′.
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For the convergence of Vn,1, it suffices to check the convergence of its elements. Let g3,k1,k2(u) =

E[Xk1Xk2{U +X ′{β(W ∗)− β(w∗)}}2|W ∗ = u]fW ∗(u). The convergence of its (k1, k2) element
follows by

a2αε−1
n E

[
Xk1Xk2{U +X ′{β(W ∗)− β(w∗)}}2K2

(
w∗ −W
an

)]
= a2αε−1

n

ˆ ˆ
K2

(
w∗ − u− η

an

)
g3(u)fε(η)dudη

=(1) a2αε−1
n

ˆ
K2

(
w∗ − ũ
an

) ˆ
g3(ũ− η)fε(η)dηdũ

=(2)
1

2πcos2
ε

ˆ
g3,k1,k2(w∗ − η)fε(η)dη

ˆ
|K ft(t)|2|t|2αεdt(1 + o(1)), (A.13)

where (1) follows by the change of variables ũ = u+η, (2) follows by the continuity of
´
g3,k1,k2(ũ−

η)fε(η)dη implied by Assumption M and Fan (1991, Lemma 2.1).
For Vn,2, note that (A.6) implies a1/2+αε

n E[ξj ] = O(a
1/2+αε+ς
n ), which, by an → 0 as in

Assumption OS (3), gives
Vn,2 = o(1). (A.14)

Thus, (A.13) and (A.14) imply

Σk1,k1 = C

ˆ
g3,k1,k2(w∗ − η, z)fε(η)dη,

where C =
´
|Kft(t)|2|t|2αεdt

2πcos2ε
is a constant that is independent of k1 and k2 but depends on K and

fε. Thus, by (A.10) and (A.12), we obtain (A.8).
Therefore, the conclusion follows by (A.8) and the asymptotic negligibility ofBn (i.e.,

√
na1+2αε

n Bn →
0) which is an immediate result of (A.6) and Assumption OS (6).

A.3. Proof of Theorem 2 (i). In this proof, we leverage the approach of van Es and Uh (2004)
and Uh (2003). Uh (2003, Theorem 4.7) shows that

K
(
w∗ −Wj

an

)
= C̃c(an)aθγεn

 cos(Dj)<Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
)

− sin(Dj)=Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
) +Op(a

γε(1+θ)
n c(an)),

where C̃ = AΓ(θ+1)
cssε π(µεγε)θ

, Dj =
Wj−w∗
an

mod 2π, c(an) =
´ 1

0 e
µε(s/an)γεds = O

(
aγεn eµε(1/an)γε

)
, <

and = denote the real and imaginary parts of a complex function, respectively, and Ψθ(t) =

1/(1− it)1+θ is the characteristic function of the Gamma(θ + 1) distribution. Note thatˆ
{<Ψθ(t)

2 + =Ψθ(t)
2}dt =

ˆ
|Ψθ|2dt =

ˆ ∞
−∞

1

(1 + t2)1+θ
dt <∞.

We consider three separate cases based on the value of γε, i.e., (a) 1 < γε ≤ 2, (b) γε = 1, and
(c) 1/3 < γε < 1.

Case (a) 1 < γε ≤ 2. As in the proof of Theorem 1, if Sn
p→ S, we can write

|β̂(w∗)− β(w∗)|2 = Op(|Tn|2 + |Bn|2).
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Also from the proof of Theorem 1, for k1, k2 = 1, . . . k, we have

E[Sk1,k2n ] = Sk1,k2 +O(apn). (A.15)

Using van Es and Uh (2004, Lemma 3.1), we can write

V ar(Sk1,k2n )

≤(1)
1

n

(
C̃c(an)aθγε−1

n

)2
E

 E[X2
k1
X2
k2
|W ∗]

 cos(Dj)<Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
)

− sin(Dj)=Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
) 

2  (1 + o(1))

∼(2)
1

n

(
C̃c(an)aθγε−1

n

)2
E
[
E[X2

k1X
2
k2 |W

∗]{cos(U)<Ψθ(0)− sin(U)=Ψθ(0)}2
]

(1 + o(1))

=(3)
1

n

(
C̃c(an)aθγε−1

n

)2 1

2
E[X2

k1X
2
k2 |W

∗](1 + o(1))

=(4) O

(
c(an)2a

2(θγε−1)
n

n

)
= O

(
n−1a2(1+θ)γε−2

n e2µε(1/an)γε
)
, (A.16)

where U denotes a uniform random variable on [0, 2π] which is independent of (W ∗, X). Step
(1) uses Uh (2003, Theorem 4.7), (2) uses in van Es and Uh (2004, Lemma 3.1), (3) follows
from the independence of U , E[cos(U)] = E[sin(U)] = 0, E[cos2(U)] = E[sin2(U)] = 1/2,
cos(x) sin(x) = 1

2 sin(2x), and <Ψθ(0)2 + =Ψθ(0)2 < ∞, and (4) follows from Assumptions SS
(1) and (3).

Thus, by (A.15), (A.16), and Assumption SS (5), we obtain Sn
p→ S.

We now turn to |Tn|2. First, define

ψj =

 cos(Dj)<Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
)

− sin(Dj)=Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
) Xj

{
Uj +X ′j{β(W ∗j )− β(w∗)}

}
,

so that

Tn = C̃c(an)aθγε−1
n

1

n

n∑
j=1

{ψj − E[ψj ]}+Op

(
n−1/2aγε(2+θ)−1

n eµε(1/an)γε
)
, (A.17)

by Uh (2003, Theorem 4.7) and Assumption SS (1).
Now, using van Es and Uh (2004, Lemma 3.1), we can write

V ar(ψk1j ) = E

 {cos(Dj)<Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
)
−=Ψθ(Dj)=Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
)}2

×E[Xk1Xk2{U +X ′{β(W ∗j )− β(w∗)}}2|W ∗]


∼ E

[
{cos(U)<Ψθ(0)− sin(U)=Ψθ(0)}2

×E[Xk1Xk2{U +X ′{β(W ∗j )− β(w∗)}}2|W ∗]

]
(1 + o(1))

=
1

2
E[Xk1Xk2{U +X ′{β(W ∗j )− β(w∗)}}2|W ∗]{<Ψθ(0)2 + =Ψθ(0)2}(1 + o(1)) = O(1),

where the final equality uses Assumptions SS (1) and (3), and <Ψθ(0)2 + =Ψθ(0)2 <∞. Thus,
we obtain

|Tn|2 = Op

(
c(an)2

na2
n

k

n
max
k1

V ar(ψk1j )

)
= Op

(
n−1a2{(1+θ)γε−1}

n e2µε(1/an)γε
)
. (A.18)
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For |Bn|2, note that the method of proof used to show |Bn|2 = O(a2p
n ) in the proof of Theorem

1 did not depend on the distribution of the measurement error. Hence, |Bn(w∗)|2 = O(a2p
n ) in

the supersmooth case as well. Therefore, the conclusion follows by (A.18).

Case (b) γε = 1. Using the same arguments as for the case of 1 < γε ≤ 2, we have

V ar(Sk1,k2n )

∼ 1

n

(
C̃c(an)aθγε−1

n

)2
E

E[X2
k1X

2
k2 |W

∗]

 cos(U)<Ψθ

(
1

µεγε
(Wj − w∗)

)
− sin(U)=Ψθ

(
1

µεγε
(Wj − w∗)

) 
2 (1 + o(1))

=(1)
1

n

(
C̃c(an)aθγε−1

n

)2
E

 E[X2
k1
X2
k2
|W ∗]


1
2<Ψθ

(
1

µεγε
(Wj − w∗)

)2

+1
2=Ψθ

(
1

µεγε
(Wj − w∗)

)2


 (1 + o(1))

=(2) O

(
c(an)2a

2(θγε−1)
n

na2
n

)
= O

(
n−1a2(1+θ}γε−2

n e2µε(1/an)γε
)
,

where (1) follows from the independence of U , E[cos(U)] = E[sin(U)] = 0, E[cos2(U)] =

E[sin2(U)] = 1/2, cos(x) sin(x) = 1
2 sin(2x), and (2) follows from the boundedness of <Ψ2

θ+=Ψ2
θ,

E[X2
k1
X2
k2
|W ∗ = ·] for k1, k2 = 1, . . . , k as in Assumptions SS (1) and (3). Again, we obtain

Sn
p→ S.

For |Tn|2, very similar arguments give

V ar(ψk1j )

∼ E

 {cos(U)<Ψθ

(
1

µεγε
(Wj − w∗)

)
− sin(U)=Ψθ

(
1

µεγε
(Wj − w∗)

)}2

×E[Xk1Xk2{U +X ′{β(W ∗j )− β(w∗)}}2|W ∗]

 (1 + o(1)) = O(1),

and we conclude
|Tn|2 = Op

(
n−1a2(1+θ}γε−2

n e2µε(1/an)γε
)
. (A.19)

For |Bn|2, again, the proof from the ordinary smooth case shows |Bn|2 = O(a2p
n ). Therefore,

the conclusion follows by (A.19).

Case (c) 1/3 < γε < 1. Finally, for γε < 1, we have

V ar(Sk1,k2n )

=(1)
1

n

(
C̃c(an)aθγε−1

n

)2
E

 E[Xk1Xk2 |W ∗]

 cos(Dj)<Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
)

− sin(Dj)=Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
) 

2  (1 + o(1))

≤(2)
1

n

(
C̃c(an)aθγε−1

n

)2
E
[
(E[Xk1Xk2 |W ∗])2

]1/2
×E

 cos(Dj)<Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
)

− sin(Dj)=Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
) 

41/2

(1 + o(1))

∼(3) O

(
c(an)2a

2(θγε−1)
n a

(1−γε)/2
n

n

)
E
[
(E[Xk1Xk2 |W ∗])2

]1/2
=(4) O

(
c(an)2a

2(θγε−1)
n a

(1−γε)/2
n

n

)
,
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where (1) was shown in the case of 1 < γε ≤ 2, (2) uses the Cauchy-Schwartz inequality, (3)
follows from Uh (2003, Theorem 4.9), and (4) uses Assumptions SS (1) and (3).

For |Tn|2, very similar arguments give V ar(ψk1j ) = O(a
(1−γε)/2
n ),which implies

|Tn|2 = Op

(
n−1a{(2θ+1)γε−1}

n e2µε(1/an)γε
)
. (A.20)

Finally, |Bn|2 = O(a2p
n ) as shown in the proof of Theorem 1. Therefore, the conclusion follows

by (A.20).
Notice that in the case of γε < 1, the approximation error in (A.17) is of smaller order than

the asymptotic variance as long as γε > 1/3.

A.4. Proof of Theorem 2 (ii). To show the asymptotic normality of Tn, we again use the
Cramér–Wold device and establish the distribution for the normalised version, i.e.,

λ′Tn√
V ar(λ′Tn)

d→ N(0, 1), (A.21)

for each λ ∈ Rkwith |λ| = 1. For (A.21), it suffices to check whether the Lyapunov condition is
satisfied for some ς > 0, i.e.,

E|λ′ψj − E[λ′ψj ]|2+ς

nς/2{V ar(λ′ψj)}1+2/ς
→ 0. (A.22)

As for the proof of Theorem 2 (i), we consider three cases based on the value of γε, i.e., (a)
1 < γε ≤ 2, (b) γε = 1, and (c) 1/3 < γε < 1.

Case (a) 1 < γε ≤ 2. For the denominator of (A.22), using the same arguments as those used to
bound V ar(ψk1j ) in the proof of Theorem 2 (i), we have

V ar(λ′ψj) ∼
1

2d
E[λ′XX ′λ{U +X ′{β(W ∗)− β(w∗)}}2|W ∗]

×{<Ψθ(0)2 + =Ψθ(0)2} = O(1),

where the final equality uses Assumptions SS (3) and (4), and {<Ψθ(0)2 + =Ψθ(0)2} <∞.
For the numerator of (A.22), using similar arguments as used to bound the variance, we have

E|λ′ψj − E[λ′ψj ]|2+ς ≤ 22+ςE|λ′ψj |2+ς = O(1).

Since the Lyapunov condition is satisfied, the conclusion follows. Also the order of Ωn(w∗)−1/2

follows from (A.18).

Case (b) γε = 1. Again, using the same arguments as for bounding V ar(ψk1j ) in the proof of
Theorem 2 (i), we have

V ar(λ′ψj) ∼ E

 E[λ′XX ′λ{U +X ′{β(W ∗)− β(w∗)}}2|W ∗]

×1
2

{
<Ψθ

(
1

µεγε
(Wj − w∗)

)2
+ =Ψθ

(
1

µεγε
(Wj − w∗)

)2
}  = O(1),

where the final equality follows from the boundedness of <Ψ2
θ + =Ψ2

θ, β(·), E[|U |2|X,W ∗ = ·],
and E[|Xk1 |2|W ∗ = ·] for k1 = 1, . . . , k as in Assumption SS (3) and (4).
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For the numerator of the Lyapunov condition, we use similar arguments to show E[|λ′ψj |2+ς ] =

O(1). Hence, again the Lyapunov condition is satisfied and the conclusion follows. Also the order
of Ωn(w∗)−1/2 follows from (A.19).

Case (c) 1/3 < γε < 1. For the denominator of A.22, we again use the results of the proof of
Theorem 2 (i) to show

V ar(λ′ψj) = O(a(1−γε)/2
n )E

[
E[λ′XX ′λ{U +X ′{β(W ∗)− β(w∗)}}2|W ∗ ]2

]1/2

= O(a(1−γε)/2
n ),

where the final equality uses the boundedness of β, E[|U |2|X,W ∗], and E[|Xk1 |2|W ∗] for k1 =

1, . . . , k from Assumption SS (4).
For % > 2 + ς, we have

E[|λ′ψj |2+ς ] ≤(1) E


 cos(Dj)<Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
)

− sin(Dj)=Ψθ

(
aγε−1
n
µεγε

(Wj − w∗)
) 

(2+ς)%
%−2−ς


(%−2−ς)/%

×E
[
(λ′X{U +X ′{β(W ∗)− β(w∗)}})%

](2+ς)/%

=(2) O
(
a(1−γε)(%−2−ς)/%
n

)
E
[
(λ′X{U +X ′{β(W ∗)− β(w∗)}})%

](2+ς)/%

=(3) O
(
a(1−γε)(%−2−ς)/%
n

)
,

where (1) uses Hölder’s inequality, (2) uses van Es and Uh (2004, Lemma 3.1), and (3) follows
from similar arguments as used to bound the variance of ψj(w∗) in earlier parts of this proof.
Taking % = 4, the Lyapunov condition is satisfied if na2

n → 0 which is true under Assumption
SS (5). This leads to the conclusion. Also the order of Ωn(w∗)−1/2 follows from (A.20).

Appendix B. Proofs for Section 3

Notation. Define

µ̂1(t) =
1

n

n∑
j=1

eitWj , µ̂2(t) =
1

n

n∑
j=1

W r
j e

itWj ,

µ̂3(t) =
1

n

n∑
j=1

Xj [Uj +X ′j{β(W ∗j )− β(w∗)}]eitWj ,

µl(t) = E[µ̂l(t)], for l = 1, 2, 3,

δl(t) = µ̂l(t)− µl(t), for l = 1, 2, 3.

Let Ŝn and T̂n denote the objects obtained by replacing K by K̂ in Sn and Tn, respectively. Also
define

T̂ dom
n =

1

n

n∑
j=1

3∑
l=1

(ζl,j − E[ζl,j ]), Rn = T̂n − T̂ dom
n ,
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where

ζ1,j = − 1

2π

ˆ  iAn(t, w∗)µ2(t)

µ2
1(t)

+ e−itw∗K ft(tan)
µ3(t) exp

(´ t
0

iµ2(s)
µ1(s) ds

)
µ2

1(t)

 eitWjdt,(B.1)

ζ2,j =
1

2π

ˆ
iAn(t, w∗)

µ1(t)
W r
j e

itWjdt,

ζ3,j =
1

2π

ˆ
e−itw∗K ft(tan)

exp
(´ t

0
iµ2(s)
µ1(s) ds

)
µ1(t)

Xj [Uj +X ′j{β(W ∗j )− β(w∗)}]eitWjdt,

An(t, w∗) =


´∞
t e−isw∗K ft(san)µ3(s)

µ1(s) exp
(´ s

0
iµ2(u)
µ1(u) du

)
ds t ≥ 0

´ −∞
t e−isw∗K ft(san)µ3(s)

µ1(s) exp
(´ s

0
iµ2(u)
µ1(u) du

)
ds t < 0.

Then the estimator β̃(w∗) is written as

β̃(w∗) = β(w∗) + Ŝ−1
n (T̂ dom

n +Rn +Bn).

To understand T̂ dom
n , note that

T̂n =
1

2π

ˆ
e−itw∗K ft(tan)

{
exp

(ˆ t

0

iµ̂2(s)

µ̂1(s)
ds

)
µ̂3(t)

µ̂1(t)
− exp

(ˆ t

0

iµ2(s)

µ1(s)
ds

)
µ3(t)

µ1(t)

}
dt,

and its Fréchet derivative as a functional of (µ̂1, µ̂2, µ̂3) at (µ1, µ2, µ3) in the direction of (δ1, δ2, δ3)

is

1

2π

ˆ
e−itw∗K ft(tan)

µ3(t)

µ1(t)
exp

(ˆ t

0

iµ2(s)

µ1(s)
ds

) ˆ t

0

{
iδ2(s)

µ1(s)
− iµ2(s)δ1(s)

µ2
1(s)

}
dsdt

+
1

2π

ˆ
e−itw∗K ft(tan)

{
δ3(t)

µ1(t)
− µ3(t)δ1(t)

µ2
1(t)

}
exp

(ˆ t

0

iµ2(s)

µ1(s)
ds

)
dt.

Then T̂ dom
n is the Fréchet derivative of T̂n, which follows by reorganising the terms with re-

spect to δl for l = 1, 2, 3 and using the fact that
´∞
−∞
´ t

0 f(t, s)dsdt =
´∞

0

´∞
t f(s, t)dsdt +´ 0

−∞
´ −∞
t f(s, t)dsdt for any absolutely integrable function f .

Note that ζ3,j = ξj defined in (A.1). So 1
n

∑n
j=1(ζ3,j−E[ζ3,j ]) = Tn characterises the estimation

variance when fε is known, and 1
n

∑n
j=1

∑2
l=1(ζl,j−E[ζl,j ]) characterises the extra variance caused

by the estimation error of fε in T̂ dom
n . Since T̂ dom

n dominates Rn in T̂n, 1
n

∑n
j=1

∑2
l=1(ζl,j−E[ζl,j ])

is the dominant component of T̂n−Tn, and it is non-negligible compared to Tn for the asymptotics
of β̃(w∗).

B.1. Proof of Theorem 3 (i). Observe that

|β̃(w∗)− β(w∗)|2 ≤ 3λmax(Ŝ−2
n )(|T̂ dom

n |2 + |Rn|2 + |Bn|2).

Also note that λmax(Ŝ−2
n ) = {λmin(Ŝn)}−2 and λmin(Ŝn) ≥ inf |δ|=1 δ

′(Ŝn − Sn)δ + λmin(Sn). By
Assumption M and (A.7), if

Ŝn − Sn
p→ 0, (B.2)

we have
|β̃(w∗)− β(w∗)|2 = Op(|T̂ dom

n |2 + |Rn|2 + a2p
n ). (B.3)
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For (B.2), note that

|Ŝk1,k2n − Sk1,k2n | =

∣∣∣∣∣∣ 1

nan

n∑
j=1

Xk1,jXk2,j

{
K̂
(
w∗ −Wj

an

)
−K

(
w∗ −Wj

an

)}∣∣∣∣∣∣
= Op

(
a−1
n E

∣∣∣∣Xk1Xk2

{
K̂
(
w∗ −W
an

)
−K

(
w∗ −W
an

)}∣∣∣∣)
=(1) Op

(
a−1
n

ˆ ∣∣∣∣K̂(w∗ − uan

)
−K

(
w∗ − u
an

)∣∣∣∣ fW (u)du

)
=(2) Op

(ˆ
|K̂(ǔ)−K(ǔ)|fW (w∗ − anǔ)dǔ

)
=(3) Op

(
n−1/2a−(3αw+3αε+2)

n log a−1
n

)
,

for k1, k2 = 1, . . . , k, where (1) follows by E[|Xk1Xk2 ||W ∗] < ∞ implied by Assumption M, (2)
follows by the change of variable ǔ = w∗−u

an
, and (3) follows by Lemma 2. Then (B.2) follows by

Assumption OS’ (2).
For |T̂ dom

n |2, since |T̂ dom
n |2 = O

(
n−1

∑3
l=1E|ζl,1|2

)
, it suffices to check the magnitude of

E|ζk1l,1|
2 for l = 1, 2, 3 and k1 = 1, . . . , k. For E|ζk12,1|2, we have

E|ζk22,1| = E

∣∣∣∣∣∣ iW
r

2π

ˆ
e−itw∗K ft(tan)

µk13 (t) exp
(´ t

0
iµ2(u)
µ1(u) du

)
µ1(t)

ˆ t

0

eisW

µ1(s)
dsdt

∣∣∣∣∣∣
2

≤ E|W r|2

(2π)2

ˆ |K ft(tan)|

∣∣∣∣∣∣
µk13 (t) exp

(´ t
0

iµ2(u)
µ1(u) du

)
µ1(t)

∣∣∣∣∣∣ |t| sup
|s|≤|t|

1

|µ1(s)|
dt

2

= O

a−4
n

 sup
|t|≤a−1

n

∣∣∣∣∣∣
µk13 (t) exp

(´ t
0

iµ2(u)
µ1(u) du

)
µ1(t)

∣∣∣∣∣∣
2(

sup
|t|≤a−1

n

1

|µ1(s)|

)2


= O(a−(2αw+2αε+4)
n ), (B.4)

where the last equality follows by

sup
|t|≤a−1

n

∣∣∣∣∣∣
µk13 (t) exp

(´ t
0

iµ2(u)
µ1(u) du

)
µ1(t)

∣∣∣∣∣∣ = sup
|t|≤a−1

n

∣∣∣∣{E[XX ′{β(W ∗)− β(w∗)}|W ∗]k1fW ∗
}ft

(t)

∣∣∣∣ = O(1),

sup
|t|≤a−1

n

1

|µ1(s)|
= O

(
1

inf |t|≤a−1
n
|f ft
W ∗(t)| inf |t|≤a−1

n
|f ft
ε (t)|

)
= O(a−(αw+αε)

n ).

By similar arguments, we have E|ζk11,1|2 = O(a
−(4αw+2αε+4)
n ) and E|ζk13,1|2 = O(a

−(2αε+2)
n ), which

together with (B.4) imply
|T̂ dom
n |2 = Op(n

−1a−(4αw+2αε+4)
n ). (B.5)

For |Rn|2, decompose Rn =
∑14

l=1Rn,l, where
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Rn,1 = − 1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds

)
δ3(t)δ1(t)

µ1(t)[µ1(t) + δ1(t)]
dt,

Rn,2 =
1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds

)
µ3(t)δ2

1(t)

µ2
1(t)[µ1(t) + δ1(t)]

dt,

Rn,3 = − 1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds

) ˆ t

0

iδ2(s)δ1(s)

µ1(s)[µ1(s) + δ1(s)]
ds
µ3(t)

µ1(t)
dt,

Rn,4 =
1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds

)ˆ t

0

iµ2(s)δ2
1(s)

µ2
1(s)[µ1(s) + δ1(s)]

ds
µ3(t)

µ1(t)
dt,

Rn,5 =
1

4π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

)(ˆ t

0

iδ2(s)

µ1(s)
ds

)2
µ3(t)

µ1(t)
dt,

Rn,6 =
1

4π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

)(ˆ t

0

iµ2(s)δ1(s)

µ2
1(s)

ds

)2
µ3(t)

µ1(t)
dt,

Rn,7 =
1

4π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

)(ˆ t

0

iδ2(s)δ1(s)

µ1(s)[µ1(s) + δ1(s)]
ds

)2
µ3(t)

µ1(t)
dt,

Rn,8 =
1

4π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

)(ˆ t

0

iµ2(s)δ2
1(s)

µ2
1(s)[µ1(s) + δ1(s)]

ds

)2
µ3(t)

µ1(t)
dt,

Rn,9 = − 1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

)
´ t

0
iδ2(s)
µ1(s)ds

×
´ t

0
iµ2(s)δ1(s)
µ21(s)

ds

 µ3(t)

µ1(t)
dt,

Rn,10 = − 1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

){ ´ t
0

iδ2(s)
µ1(s)ds

×
´ t

0
iδ2(s)δ1(s)

µ1(s)[µ1(s)+δ1(s)]ds

}
µ3(t)

µ1(t)
dt,

Rn,11 =
1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

)
´ t

0
iδ2(s)
µ1(s)ds

×
´ t

0
iµ2(s)δ21(s)

µ21(s)[µ1(s)+δ1(s)]
ds

 µ3(t)

µ1(t)
dt,

Rn,12 =
1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

)
´ t

0
iµ2(s)δ1(s)
µ21(s)

ds

×
´ t

0
iδ2(s)δ1(s)

µ1(s)[µ1(s)+δ1(s)]ds

 µ3(t)

µ1(t)
dt,

Rn,13 = − 1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

)
´ t

0
iµ2(s)δ1(s)
µ21(s)

ds

×
´ t

0
iµ2(s)δ21(s)

µ21(s)[µ1(s)+δ1(s)]
ds

 µ3(t)

µ1(t)
dt,

Rn,14 = − 1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

)
´ t

0
iδ2(s)δ1(s)

µ1(s)[µ1(s)+δ1(s)]ds

×
´ t

0
iµ2(s)δ21(s)

µ21(s)[µ1(s)+δ1(s)]
ds

 µ3(t)

µ1(t)
dt,

for some |φ2(t)| ≤
∣∣∣´ t0 i

{
µ̂2(s)
µ̂1(s) −

µ2(s)
µ1(s)

}
ds
∣∣∣. By similar arguments as used in Kurisu and Otsu

(2019, Lemma 1), for l = 1, 2, 3, we have

sup
|t|≤a−1

n

|δl(t)| = Op(n
−1/2 log a−1

n ). (B.6)
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For Rn,1, we write

|Rk1n,1| =

∣∣∣∣∣ 1

2π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds

)
δk13 (t)δ1(t)

µ1(t){µ1(t) + δ1(t)}
dt

∣∣∣∣∣
=

∣∣∣∣∣ 1

2π

ˆ
e−itw∗K ft(tan)

δk13 (t)δ1(t)

f ft
W ∗(t){f ft

ε (t)}2 + δ1(t)f ft
ε (t)

dt

∣∣∣∣∣
=(1) Op

a−1
n sup|t|≤a−1

n
|δk13 (t)| sup|t|≤a−1

n
|δ1(t)|

inf |t|≤a−1
n
|f ft
W ∗(t)|

(
inf |t|≤a−1

n
|f ft
ε (t)|

)2

 =(2) Op

(
n−1a−(αw+2αε+1)

n (log a−1
n )2

)
,

where (1) follows by Assumption OS’ (2) and (2) follows by Assumption OS (1), Assumption OS’
(1), and (B.6), which implies |Rn,1| = Op

(
n−1a

−(αw+2αε+1)
n (log a−1

n )2
)
. By similar arguments,

we have |Rn,2| = O
(
n−1a

−(2αw+2αε+1)
n (log a−1

n )2
)
, |Rn,3| = O

(
n−1a

−(2αw+2αε+2)
n (log a−1

n )2
)
,

and |Rn,4| = O
(
n−1a

−(3αw+2αε+2)
n (log a−1

n )2
)
.

For Rn,5, we write

|Rk1n,5| =

∣∣∣∣∣ 1

4π

ˆ
e−itw∗K ft(tan) exp

(ˆ t

0

iµ2(s)

µ1(s)
ds+ φ2(t)

)(ˆ t

0

iδ2(s)

µ1(s)
ds

)2
µk13 (t)

µ1(t)
dt

∣∣∣∣∣
=

∣∣∣∣∣ 1

4π

ˆ
e−itw∗K ft(tan)eφ2(t)

(ˆ t

0

iδ2(s)

µ1(s)
ds

)2 {
E[λ′XX ′{β(W ∗)− β(w∗)}|W ∗]k1fW ∗

}ft
(t)dt

∣∣∣∣∣
= Op

a−3
n sup|t|≤a−1

n
e|φ2(t)|

(
sup|t|≤a−1

n
|δ2(t)|

)2

(
inf |t|≤a−1

n
|f ft
W ∗(t)| inf |t|≤a−1

n
|f ft
ε (t)|

)2

 = Op

(
n−1a−(2αw+2αε+3)

n (log a−1
n )2

)
,

where the last equality follows by Assumption OS (1), Assumption OS’ (1), (B.6), and

sup
|t|≤a−1

n

e|φ2(t)| ≤ exp

(
sup
|t|≤a−1

n

∣∣∣∣ˆ t

0
i

{
µ̂2(s)

µ̂1(s)
− µ2(s)

µ1(s)

}
ds

∣∣∣∣
)

= Op

(
exp

(
n−1/2a−(2αw+αε+1)

n log a−1
n

))
= Op(1).

This implies |Rn,5| = Op

(
n−1a

−(2αw+2αε+3)
n (log a−1

n )2
)
. By similar arguments, we have

|Rn,6| = O
(
n−1a−(2αw+αε+3)

n (log a−1
n )2

)
, |Rn,7| = O

(
n−2a−(4αw+4αε+3)

n (log a−1
n )4

)
,

|Rn,8| = O
(
n−2a−(6αw+4αε+3)

n (log a−1
n )4

)
, |Rn,9| = O

(
n−1a−(3αw+2αε+3)

n (log a−1
n )2

)
,

|Rn,10| = O
(
n−3/2a−(3αw+3αε+3)

n (log a−1
n )3

)
, |Rn,11| = O

(
n−3/2a−(4αw+3αε+3)

n (log a−1
n )3

)
,

|Rn,12| = O
(
n−3/2a−(4αw+3αε+3)

n (log a−1
n )3

)
, |Rn,13| = O

(
n−3/2a−(5αw+3αε+3)

n (log a−1
n )3

)
,

|Rn,14| = O
(
n−2a−(5αw+4αε+3)

n (log a−1
n )4

)
.

Since αw > 1 as given in Assumption OS’ (1), Assumption OS’ (2) implies

|Rn| = O
(
n−1a−(3αw+2αε+3)

n (log a−1
n )2

)
. (B.7)

The conclusion then follows by (B.5), (B.7), and (B.3).
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B.2. Proof of Theorem 3 (ii). First, for each λ ∈ Rk with |λ| = 1, we show

λ′T̂ dom
n√

V ar(λ′T̂ dom
n )

d→ N(0, 1). (B.8)

For (B.8), it suffices to check the Lyapunov condition for some ς > 0, i.e.,

E
∣∣∣∑3

l=1 λ
′ζl,1 − E[

∑3
l=1 λ

′ζl,1]
∣∣∣2+ς

nς/2{V ar(
∑3

l=1 λ
′ζl,1)}1+ς/2

→ 0. (B.9)

For the numerator of (B.9), it suffices to check the upper bound of each E|λ′ζl,1|2+ς for l = 1, 2, 3.
Note that

E|λ′ζ2,1|2+ς = E

∣∣∣∣∣∣ iW
r

2π

ˆ
e−itw∗K ft(tan)

λ′µ3(t) exp
(´ t

0
iµ2(u)
µ1(u) du

)
µ1(t)

ˆ t

0

eisW

µ1(s)
dsdt

∣∣∣∣∣∣
2+ς

≤ E|W r|2+ς

(2π)2+ς

ˆ |K ft(tan)|

∣∣∣∣∣∣
λ′µ3(t) exp

(´ t
0

iµ2(u)
µ1(u) du

)
µ1(t)

∣∣∣∣∣∣ |t| sup
|s|≤|t|

1

|µ1(s)|
dt

2+ς

= O

a−2(2+ς)
n

 sup
|t|≤a−1

n

∣∣∣∣∣∣
λ′µ3(t) exp

(´ t
0

iµ2(u)
µ1(u) du

)
µ1(t)

∣∣∣∣∣∣
2+ς (

sup
|t|≤a−1

n

1

|µ1(s)|

)2+ς


= O
(
a−(αw+αε+2)(2+ς)
n

)
, (B.10)

where the last equality follows by

sup
|t|≤a−1

n

∣∣∣∣∣∣
λ′µ3(t) exp

(´ t
0

iµ2(u)
µ1(u) du

)
µ1(t)

∣∣∣∣∣∣ = sup
|t|≤a−1

n

∣∣∣{E[λ′XX ′{β(W ∗)− β(w∗)}|W ∗]fW ∗
}ft

(t)
∣∣∣ = O(1),

sup
|t|≤a−1

n

1

|µ1(s)|
= O

(
1

inf |t|≤a−1
n
|f ft
W ∗(t)| inf |t|≤a−1

n
|f ft
ε (t)|

)
= O(a−(αw+αε)

n ).

By similar arguments, we haveE|λ′ζ1,1|2+ς = O(a
−(2αw+αε+2)(2+ς)
n ) andE|λ′ζ3,1|2+ς = O(a

−(αε+1)(2+ς)
n ),

which together with (B.10) imply

E

∣∣∣∣∣
3∑
l=1

λ′ζn,l,1 − E[

3∑
l=1

λ′ζn,l,1]

∣∣∣∣∣
2+ς

= O
(
a−(2αw+αε+2)(2+ς)
n

)
. (B.11)

For the denominator of (B.9), by Assumption M’ (3), it suffices to check the lower bound of
each E|λ′ζl,1|2 for l = 1, 2, 3. Define

mλ
n,1(t) =

iλ′An(t, w∗)µ2(t)

µ2
1(t)

+ e−itw∗K ft(tan)
λ′µ3(t) exp

(´ t
0

iµ2(s)
µ1(s) ds

)
µ2

1(t)
,

mλ
n,2(t) =

λ′An(t, w∗)

µ1(t)
, mλ

n,3(t) =
K ft(tan)

f ft
ε (t)

. (B.12)
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For E|λ′ζ2,1|2, first note that

E|λ′ζ2,1|2 =
1

4π2

ˆ ∣∣∣∣ˆ λ′An(t, w∗)

µ1(t)
eitudt

∣∣∣∣2E[W r2 |W = u]fW (u)du

≥ 1

4π2

ˆ
u∈I2

∣∣∣∣ˆ λ′An(t, w∗)

µ1(t)
eitudt

∣∣∣∣2E[W r2 |W = u]fW (u)du

≥ c2

4π2

ˆ
u∈I2

∣∣∣∣ˆ λ′An(t, w∗)

µ1(t)
eitudt

∣∣∣∣2 du, (B.13)

for any finite interval I2 not reduced to a point and some positive constant c2 which depends on
I2, where the last inequality follows by Assumption M’ (1). Also note that there exists a positive
constant ckot

2 such that ∣∣∣∣ˆ λ′A(t, w∗)

µ1(t)
eitudt

∣∣∣∣2 ≤ ckot
2 |u|−2,

for u ∈ R\I2. This is an immediate result of

lim
|u|→∞

u

ˆ
λ′A(t, w∗)

µ1(t)
eitudt = 0,

which follows by Assumption M’ (2), Schennach (2004, Lemma 10), and
ˆ

d

dt

(
λ′A(t, w∗)

µ1(t)

)
eitudt = −iu

ˆ
λ′A(t, w∗)

µ1(t)
eitudt.

Then, for all n large enough, we have
ˆ
u∈R\I2

∣∣∣∣ˆ λ′An(t, w∗)

µ1(t)
eitudt

∣∣∣∣2 du ≤ ckot
2

ˆ
u∈R\I2

|u|−2du <∞, (B.14)

which together with (B.13) imply that for all n large enough, there exists a positive constant
Ckot

2 such that

E|λ′ζ2,1|2 ≥ Ckot
2

ˆ ∣∣∣∣ˆ λ′An(t, w∗)

µ1(t)
eitudt

∣∣∣∣2 du = 2πCkot
2

ˆ
|mλ

n,2(t)|2dt, (B.15)

where the equality follows by the Parseval’s identity. By similar arguments, for some pos-
itive constants Ckot

1 and Ckot
3 , we have E|λ′ζ1,1|2 ≥ 2πCkot

1

´
|mλ

n,1(t)|2dt and E|λ′ζ3,1|2 ≥
2πCkot

3

´
|mλ

n,3(t)|2dt, which together with (B.15) and Assumption M’ (3) imply that for some
positive constant Ckot, we have

V ar

(
3∑
l=1

λ′ζl,1

)
≥ Ckot max

l=1,2,3

ˆ
|mλ

n,l(t)|2dt. (B.16)

Thus, by Assumption OS’ (3), (B.9) holds true, which implies

{V ar(T̂ dom
n )}−1/2T̂ dom

n
d→ N(0, Ik).

Also note that by (B.7), (A.7), and (B.16), the higher order terms in T̂n and the bias terms
are asymptotically negligible, i.e.

λ′(Rn +Bn)√
V ar(λ′T̂ dom

n )
=

n1/2λ′(Rn +Bn)√
V ar

(∑3
l=1 λ

′ζl,1

) = op(1), (B.17)
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which follow by Assumption OS’ (3). Thus, the conclusion follows by (B.8) and (B.17).

B.3. Proof of Theorem 4 (i). We know from the proof of Theorem 2, if

Ŝn − Sn
p→ 0, (B.18)

then for 1/3 ≤ γε ≤ 2,

|β̃(w∗)− β(w∗)|2 = Op(|T̂ dom
n |2 + |Rn|2 + a2p

n ). (B.19)

For (B.18), using the same arguments as in the proof of Theorem 3 (i), we have

|Ŝk1,k2n − Sk1,k2n | = Op

(ˆ
|K̂(ǔ)−K(ǔ)|fW (w∗ − anǔ)dǔ

)
= Op

(
n−1/2a−2

n (log a−1
n )e3µwa

−γw
n +3µεa

−γε
n

)
,

where the final equality follows by Lemma 3. Then (B.18) follows by Assumption SS’ (4).
For |T̂ dom

n |2, since |T̂ dom
n |2 = O

(
n−1

∑3
l=1E|ζl,1|2

)
, we again check the magnitude of E|ζk1l,1|

2

for l = 1, 2, 3 and k1 = 1, . . . , k. For E|ζk12,j |2, we have

E|ζk22,1|
2 =(1) O

a−4
n

(
sup
|t|≤a−1

n

1

|µ1(s)|

)2
 =(2) O

(
a−4
n e2µwa

−γw
n +2µεa

−γε
n

)
, (B.20)

where (1) is taken directly from the proof of Theorem 3 (i), and (2) follows from

sup
|t|≤a−1

n

1

|µ1(s)|
= O

(
1

inf |t|≤a−1
n
|f ft
W ∗(t)| inf |t|≤a−1

n
|f ft
ε (t)|

)
= O

(
eµwa

−γw
n +µεa

−γε
n

)
,

where the first equality is also taken from the proof of Theorem 3 (i).
By similar arguments, we haveE|ζk11,1| = O

(
a−4
n e4µwa

−γw
n +2µεa

−γε
n

)
andE|ζk13,1|2 = O

(
a−2
n e2µεa

−γε
n

)
,

which, together with (B.20), imply

|T̂ dom
n |2 = Op

(
n−1a−4

n e4µwa
−γw
n +2µεa

−γε
n

)
. (B.21)

For |Rn|2, we again decompose this as Rn =
∑14

l=1Rn,l, where Rn,l for l = 1, . . . , 14 are defined
in the proof of Theorem 3 (i). By similar arguments as used in Kurisu and Otsu (2019, Lemma
1), for l = 1, 2, 3, we have

sup
|t|≤a−1

n

|δl(t)| = Op(n
−1/2 log a−1

n ). (B.22)

For Rn,1, we write

|Rk1n,1| =(1) Op

a−1
n sup|t|≤a−1

n
|δk13 (t)| sup|t|≤a−1

n
|δ1(t)|

inf |t|≤a−1
n
|f ft
W ∗(t)|

(
inf |t|≤a−1

n
|f ft
ε (t)|

)2


=(2) Op

(
n−1a−1

n (log a−1
n )2eµwa

−γw
n +2µεa

−γε
n

)
,

where (1) follows directly from the proof of Theorem 3 (i), and (2) follows from Lemma 3 and
(B.22), which implies
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|Rn,1| = Op

(
n−1a−1

n (log a−1
n )2eµwa

−γw
n +2µεa

−γε
n

)
.

By similar arguments, we have |Rn,2| = O
(
n−1a−1

n (log a−1
n )2e2µwa

−γw
n +2µεa

−γε
n

)
,

|Rn,3| = O
(
n−1a−2

n (log a−1
n )2e2µwa

−γw
n +2µεa

−γε
n

)
, |Rn,4| = O

(
n−1a−2

n (log a−1
n )2e3µwa

−γw
n +2µεa

−γε
n

)
.

For Rn,5, we can write

|Rk1n,5| = Op

a−3
n sup|t|≤a−1

n
e|φ2(t)|

(
sup|t|≤a−1

n
|δ2(t)|

)2

(
inf |t|≤a−1

n
|f ft
W ∗(t)| inf |t|≤a−1

n
|f ft
ε (t)|

)2


= Op

(
n−1a−3

n (log a−1
n )2e2µwa

−γw
n +2µεa

−γε
n

)
,

where the last equality follows by Lemma 3, (B.22), and the fact that sup|t|≤a−1
n
e|φ2(t)| = Op(1) as

shown in the proof of Theorem 3 (i). This implies |Rn,5| = Op

(
n−1a−3

n (log a−1
n )2e2µwa

−γw
n +2µεa

−γε
n

)
.

By similar arguments, we have

|Rn,6| = O
(
n−1a−3

n (log a−1
n )2e2µwa

−γw
n +µεa

−γε
n

)
, |Rn,7| = O

(
n−2a−3

n (log a−1
n )4e4µwa

−γw
n +4µεa

−γε
n

)
,

|Rn,8| = O
(
n−2a−3

n (log a−1
n )4e6µwa

−γw
n +4µεa

−γε
n

)
, |Rn,9| = O

(
n−1a−3

n (log a−1
n )2e3µwa

−γw
n +2µεa

−γε
n

)
,

|Rn,10| = O
(
n−3/2a−3

n (log a−1
n )3e3µwa

−γw
n +3µεa

−γε
n

)
, |Rn,11| = O

(
n−3/2a−3

n (log a−1
n )3e4µwa

−γw
n +3µεa

−γε
n

)
,

|Rn,12| = O
(
n−3/2a−3

n (log a−1
n )3e4µwa

−γw
n +3µεa

−γε
n

)
, |Rn,13| = O

(
n−3/2a−3

n (log a−1
n )3e5µwa

−γw
n +3µεa

−γε
n

)
,

|Rn,14| = O
(
n−2a−3

n (log a−1
n )4e5µwa

−γw
n +4µεa

−γε
n

)
.

Combining these results, we obtain

|Rn| = O
(
n−1a−3

n (log a−1
n )2e3µwa

−γw
n +2µεa

−γε
n

)
. (B.23)

The conclusion then follows by (B.19), (B.21), and (B.23).

B.4. Proof of Theorem 4 (ii). First, for each λ ∈ Rk with |λ| = 1, we show

λ′T̂ dom
n√

V ar(λ′T̂ dom
n )

d→ N(0, 1). (B.24)

For (B.24), it suffices to check the Lyapunov condition for some ς > 0, i.e.,

E
∣∣∣∑3

l=1 λ
′ζl,1 − E[

∑3
l=1 λ

′ζl,1]
∣∣∣2+ς

nς/2
{
V ar

(∑3
l=1 λ

′ζl,1

)}1+ς/2
→ 0. (B.25)
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For the numerator of (B.25), it suffices to check the upper bound of each E|λ′ζl,1|2+ς for l = 1, 2, 3.
For E|λ′ζ2,j |2+ς , we have

E|λ′ζ2,1|2+ς =(1) O

a−2(2+ς)
n

(
sup
|t|≤a−1

n

1

|µ1(s)|

)2+ς


= O
(
a−2(2+ς)
n e(2+ς)(µwa

−γw
n +µεa

−γε
n )

)
, (B.26)

where (1) follows directly from the proof of Theorem 3 (ii), and (2) uses

sup
|t|≤a−1

n

1

|µ1(s)|
= O

(
eµwa

−γw
n +µεa

−γε
n

)
,

which was shown previously in the proof of Theorem 4 (i).
By similar arguments, we have

E|λ′ζ1,1|2+ς = O
(
a−2(2+ς)
n e(2+ς)(2µwa

−γw
n +µεa

−γε
n )

)
, E|λ′ζ3,1|2+ς = O

(
a−(2+ς)
n e(2+ς)µεa

−γε
n

)
.

Together with (B.26), these imply

E

∣∣∣∣∣
3∑
l=1

λ′ζl,1 − E

[
3∑
l=1

λ′ζl,1

]∣∣∣∣∣
2+ς

= O
(
a−2(2+ς)
n e(2+ς)(2µwa

−γw
n +µεa

−γε
n )

)
. (B.27)

For the denominator of (B.25), by Assumption SS’ (3), it suffices to check the lower bound of
each E|λ′ζl,1|2 for l = 1, 2, 3. As shown in the proof of Theorem 3 (ii), E|λ′ζ2,1|2 can be bounded
from below as

E|λ′ζ2,1|2 ≥ 2πC2

ˆ
|mλ

n,2(t)|2dt, (B.28)

for some positive constant C2. Equally, using similar arguments, for some positive constants C1

and C3, we have

E|λ′ζ1,1|2 ≥ 2πC1

ˆ
|mλ

n,1(t)|2dt, E|λ′ζ3,1|2 ≥ 2πC3

ˆ
|mλ

n,3(t)|2dt.

Together with Assumption SS’ (3), these imply that for some positive constant C, we have

V ar

(
3∑
l=1

λ′ζl,1

)
≥ C max

l=1,2,3

ˆ
|mλ

n,l(t)|2dt. (B.29)

Then, by Assumption SS’ (4), (B.25) holds true, which implies

V ar(T̂ dom
n )−1/2T̂ dom

n
d→ N(0, Ik).

Also note that by (B.23) and (B.29), the higher order terms in T̂n and the bias terms are
asymptotically negligible, i.e.,

λ′(Rn +Bn)√
V ar(λ′T̂ dom

n )
=

n1/2λ′(Rn +Bn)√
V ar

(∑3
l=1 λ

′ζl,1

) = op(1), (B.30)

which follow by Assumption SS’ (4). Thus, the conclusion follows by (B.24) and (B.30).
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Appendix C. Lemmas

Lemma 1. Under Assumptions M and OS (1)-(2), it holds
´
|K(x)|2dx = O(a−2αε

n ).

Proof. Note that
ˆ
|K(x)|2dx = O

(ˆ ∣∣∣∣ K ft(t)

f ft
ε (t/an)

∣∣∣∣2 dt
)

= O

(
sup
|t|≤a−1

n

|f ft
ε (t)|−2

)
,

where the first equality follows by Parseval’s identity and the second equality follows by Assump-
tion OS (2). Then, the conclusion follows by Assumption OS (1). �

Lemma 2. Under Assumptions M, R, OS (1)-(3), and OS’ (1)-(2), it holds

sup
x
|K̂(x)−K(x)| = O

(
n−1/2a−(3αw+3αε+2)

n log a−1
n

)
.

Proof. By the change of variables combined with |e−itx| = 1 and boundedness ofK ft (Assumption
OS (2)), we have

|K̂(x)−K(x)| =

∣∣∣∣∣ 1

2π

ˆ
e−itx

{
1

f̂ ft
ε (t/an)

− 1

f ft
ε (t/an)

}
K ft(t)dt

∣∣∣∣∣ = O

(
a−1
n sup
|t|≤a−1

n

∣∣∣∣∣ 1

f̂ ft
ε (t)

− 1

f ft
ε (t)

∣∣∣∣∣
)
,

By the definition of f̂ ft
ε , note that

sup
|t|≤a−1

n

∣∣∣∣∣ 1

f̂ ft
ε (t)

− 1

f ft
ε (t)

∣∣∣∣∣ = sup
|t|≤a−1

n

∣∣∣∣∣ f̂ ft
W ∗(t)f

ft
W (t)− f ft

W ∗(t)f̂
ft
W (t)

f̂ ft
W (t)f ft

W (t)

∣∣∣∣∣
≤ sup

|t|≤a−1
n

|f̂ ft
W ∗(t)− f ft

W ∗(t)|
|f̂ ft
W (t)|

+ sup
|t|≤a−1

n

|f̂ ft
W (t)− f ft

W (t)|
|f̂ ft
W (t)||f ft

ε (t)|

≤
sup|t|≤a−1

n
|f̂ ft
W ∗(t)− f ft

W ∗(t)|

inf |t|≤a−1
n
|f ft
W (t)| − sup|t|≤a−1

n
|f̂ ft
W (t)− f ft

W (t)|
+

sup|t|≤a−1
n
|f̂ ft
W (t)− f ft

W (t)|
(

inf |t|≤a−1
n
|f ft
ε (t)|

)−1

inf |t|≤a−1
n
|f ft
W (t)| − sup|t|≤a−1

n
|f̂ ft
W (t)− f ft

W (t)|
,

where the first inequality follows from the triangle inequality. Thus, the conclusion follows by
Assumption OS’ (2) and

sup
|t|≤a−1

n

|f̂ ft
W ∗(t)− f ft

W ∗(t)| = Op

(
n−1/2a−(2αw+2αε+1)

n log a−1
n

)
, (C.1)

sup
|t|≤a−1

n

|f̂ ft
W (t)− f ft

W (t)| = Op(n
−1/2 log a−1

n ), (C.2)

(
inf
|t|≤a−1

n

|f ft
W (t)|

)−1

= O(a−(αw+αε)
n ), (C.3)

(
inf
|t|≤a−1

n

|f ft
ε (t)|

)−1

= O(a−αεn ), (C.4)

where (C.1) follows by Kurisu and Otsu (2019, Theorem (i)), (C.2) follows by Kurisu and Otsu
(2019, Lemma 1), (C.3) follows by Assumption OS (1) and Assumption OS’ (1), and (C.4) follows
by Assumption OS (1). �
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Lemma 3. Under Assumption M, SS (1)-(2), and SS’ (1)-(2), it holds that

sup
x
|K̂(x)−K(x)| = O

(
n−1/2a−2

n (log a−1
n )e3µwa

−γw
n +3µεa

−γε
n

)
.

Proof. From the proof of Lemma 2, we know

|K̂(x)−K(x)| = O

(
a−1
n

sup|t|≤a−1
n
|f̂ ft
W ∗(t)− f ft

W ∗(t)|

inf |t|≤a−1
n
|f ft
W (t)| − sup|t|≤a−1

n
|f̂ ft
W (t)− f ft

W (t)|

)

+O

a−1
n

sup|t|≤a−1
n
|f̂ ft
W (t)− f ft

W (t)|
(

inf |t|≤a−1
n
|f ft
ε (t)|

)−1

inf |t|≤a−1
n
|f ft
W (t)| − sup|t|≤a−1

n
|f̂ ft
W (t)− f ft

W (t)|

 .

Thus, the conclusion follows by Assumption SS’ (2) and

sup
|t|≤a−1

n

|f̂ ft
W ∗(t)− f ft

W ∗(t)| = Op

(
n−1/2a−1

n (log a−1
n )e2µwa

−γw
n +2µεa

−γε
n

)
, (C.5)

sup
|t|≤a−1

n

|f̂ ft
W (t)− f ft

W (t)| = Op(n
−1/2 log a−1

n ), (C.6)

(
inf

t∈|t|≤a−1
n

|f ft
W (t)|

)−1

= O
(
eµwa

−γw
n +µεa

−γε
n

)
, (C.7)

(
inf

t∈|t|≤a−1
n

|f ft
ε (t)|

)−1

= O
(
eµεa

−γε
n

)
, (C.8)

where (C.5) follows by Kurisu and Otsu (2019, Theorem (ii)), (C.6) follows by Kurisu and
Otsu (2019, Lemma 1), (C.7) follows by Assumption SS (1) and SS’ (1), and (C.8) follows by
Assumption SS (1). �
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